网站建站上海/百度企业号
目录
一丶Zookkeeper概述
二、Zookeeper 特点
2.1Zookeeper 应用场景
2.2Zookeeper 选举机制
2.2.1第一次启动选举机制
2.2.2非第一次启动选举机制
三、部署 Zookeeper 集群
3.1//安装 JDK
3.2安装 Zookeeper
3.2.1修改配置文件
3.2.2拷贝配置好的 Zookeeper 配置文件到其他机器上
3.2.3在每个节点上创建数据目录和日志目录
3.2.4在每个节点的dataDir指定的目录下创建一个 myid 的文件
四、Kafka概述
4.1Kafka 定义
4.2Kafka 简介
4.3为什么需要消息列队
4.4使用消息队列的好处
4.4.1解耦
4.4.2可恢复性
4.4.3缓冲
4.4.4灵活性
4.4.5异步通信
4.5消息队列的两种模式
4.5.1点对点模式
4.5.2发布/订阅模式
4.6Kafka 的特性
4.7artation 数据路由规则
五、 部署 kafka 集群
5.1安装 Kafka
5.1.1修改配置文件
5.1.2修改环境变量
六、Kafka 架构深入
6.1Kafka 工作流程及文件存储机制
七、 部署 Zookeeper+Kafka 集群
7.1部署 Filebeat
7.2部署 ELK,在 Logstash 组件所在节点上新建一个 Logstash 配置文件
7.3浏览器访问 http://192.168.10.13:5601 登录 Kibana
一丶Zookkeeper概述
Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。
//Zookeeper 工作机制 Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。也就是说 Zookeeper = 文件系统 + 通知机制
二、Zookeeper 特点
(1)Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。
(2)Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。
(3)全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
(4)更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。
(5)数据更新原子性,一次数据更新要么成功,要么失败。
(6)实时性,在一定时间范围内,Client能读到最新数据。
2.1Zookeeper 应用场景
提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。
●统一命名服务 在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。
●统一配置管理
(1)分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。
(2)配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。
●统一集群管理
(1)分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。
(2)ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。
●服务器动态上下线 客户端能实时洞察到服务器上下线的变化。
●软负载均衡 在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。
2.2Zookeeper 选举机制
2.2.1第一次启动选举机制
(1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
(2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING
(3)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING; (4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;
(5)服务器5启动,同4一样当小弟。
2.2.2非第一次启动选举机制
(1)当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举: 1)服务器初始化启动。
2)服务器运行期间无法和Leader保持连接。
(2)而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:
1)集群中本来就已经存在一个Leader。 对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。
2)集群中确实不存在Leader。 假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。
选举Leader规则:
1.EPOCH大的直接胜出
2.EPOCH相同,事务id大的胜出
3.事务id相同,服务器id大的胜出
SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端“更新请求”的处理逻辑速度有关。
Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加
三、部署 Zookeeper 集群
准备 3 台服务器做 Zookeeper 集群
192.168.237.21
192.168.237.22
192.168.237.23
3.1//安装 JDK
yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
java -version
3.2安装 Zookeeper
下载安装包 官方下载地址:Index of /dist/zookeeper
cd /opt
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz
tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz
mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper-3.5.7
3.2.1修改配置文件
cd /usr/local/zookeeper-3.5.7/conf/
cp zoo_sample.cfg zoo.cfgvim zoo.cfgtickTime=2000 #通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
initLimit=10 #Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
syncLimit=5 #Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认为Follwer死掉,并从服务器列表中删除Follwer
dataDir=/usr/local/zookeeper-3.5.7/data #修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
dataLogDir=/usr/local/zookeeper-3.5.7/logs #添加,指定存放日志的目录,目录需要单独创建
clientPort=2181 #客户端连接端口
#添加集群信息
server.1=192.168.237.21:3188:3288
server.2=192.168.237.22:3188:3288
server.3=192.168.237.23:3188:3288server.A=B:C:D
server.A=B:C:D
●A是一个数字,表示这个是第几号服务器。集群模式下需要在zoo.cfg中dataDir指定的目录下创建一个文件myid,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
●B是这个服务器的地址。
●C是这个服务器Follower与集群中的Leader服务器交换信息的端口。●D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
3.2.2拷贝配置好的 Zookeeper 配置文件到其他机器上
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.23722:/usr/local/zookeeper-3.5.7/conf/
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.237.23:/usr/local/zookeeper-3.5.7/conf/
3.2.3在每个节点上创建数据目录和日志目录
mkdir /usr/local/zookeeper-3.5.7/data
mkdir /usr/local/zookeeper-3.5.7/logs
3.2.4在每个节点的dataDir指定的目录下创建一个 myid 的文件
echo 1 > /usr/local/zookeeper-3.5.7/data/myid
echo 2 > /usr/local/zookeeper-3.5.7/data/myid
echo 3 > /usr/local/zookeeper-3.5.7/data/myid
3.2.5配置 Zookeeper 启动脚本
vim /etc/init.d/zookeeper#!/bin/bash
#chkconfig:2345 20 90
#description:Zookeeper Service Control Script
ZK_HOME='/usr/local/zookeeper-3.5.7'
case $1 in
start)echo "---------- zookeeper 启动 ------------"$ZK_HOME/bin/zkServer.sh start
;;
stop)echo "---------- zookeeper 停止 ------------"$ZK_HOME/bin/zkServer.sh stop
;;
restart)echo "---------- zookeeper 重启 ------------"$ZK_HOME/bin/zkServer.sh restart
;;
status)echo "---------- zookeeper 状态 ------------"$ZK_HOME/bin/zkServer.sh status
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac# 设置开机自启
chmod +x /etc/init.d/zookeeper
chkconfig --add zookeeper#分别启动 Zookeeper
service zookeeper start#查看当前状态
service zookeeper status
四、Kafka概述
4.1Kafka 定义
Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。
4.2Kafka 简介
Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写, Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。
4.3为什么需要消息列队
主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。 我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。
当前比较常见的 MQ 中间件有 ActiveMQ、RabbitMQ、RocketMQ、Kafka 等。
4.4使用消息队列的好处
4.4.1解耦
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
4.4.2可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
4.4.3缓冲
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
4.4.4灵活性
& 峰值处理能力 在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
4.4.5异步通信
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
4.5消息队列的两种模式
4.5.1点对点模式
(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
4.5.2发布/订阅模式
(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。 发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。
4.6Kafka 的特性
(1)Broker 一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。
(2)Topic 可以理解为一个队列,生产者和消费者面向的都是一个 topic。 类似于数据库的表名或者 ES 的 index 物理上不同 topic 的消息分开存储
(3)Partition 为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序
4.7artation 数据路由规则
1.指定了 patition,则直接使用;
2.未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
3.patition 和 key 都未指定,使用轮询选出一个 patition。
每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。
每个 partition 中的数据使用多个 segment 文件存储。
如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需
要将 partition 数目设为 1。
五、 部署 kafka 集群
5.1安装 Kafka
官方下载地址:Apache Kafka
cd /opt wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka
5.1.1修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}vim server.properties
broker.id=0 ●21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.10.17:9092 ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3 #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8 #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400 #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400 #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600 #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1 #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1 #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168 #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824 #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.237.21:2181,192.168.237.22:2181,192.168.237.23:2181 ●123行,配置连接Zookeeper集群地址
5.1.2修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/binsource /etc/profile//配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)echo "---------- Kafka 启动 ------------"${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)echo "---------- Kafka 停止 ------------"${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)$0 stop$0 start
;;
status)echo "---------- Kafka 状态 ------------"count=$(ps -ef | grep kafka | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thenecho "kafka is not running"elseecho "kafka is running"fi
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka//分别启动 Kafka
service kafka start3.Kafka 命令行操作
//创建topic
kafka-topics.sh --create --zookeeper 192.168.10.17:2181,192.168.10.21:2181,192.168.10.22:2181 --replication-factor 2 --partitions 3 --topic testkafka-topics.sh --create --zookeeper 192.168.10.17:2181,192.168.10.20:2181,192.168.10.21:2181 --replication-factor 2 --partitions 3 --topic test--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2
--partitions:定义分区数 --topic:定义 topic 名称//查看当前服务器中的所有 topic
kafka-topics.sh --list --zookeeper 192.168.10.17:2181,192.168.10.21:2181,192.168.10.22:2181//查看某个 topic 的详情
kafka-topics.sh --describe --zookeeper 192.168.10.17:2181,192.168.10.21:2181,192.168.10.22:2181//发布消息
kafka-console-producer.sh --broker-list 192.168.10.17:9092,192.168.10.21:9092,192.168.10.22:9092 --topic test//消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.10.17:9092,192.168.10.21:9092,192.168.10.22:9092 --topic test --from-beginning---------------------------------------------------------------------------------------from-beginning:会把主题中以往所有的数据都读取出来//修改分区数
kafka-topics.sh --zookeeper 192.168.10.17:2181,192.168.10.21:2181,192.168.10.22:2181 --alter --topic test --partitions 6//删除 topic
kafka-topics.sh --delete --zookeeper 192.168.10.17:2181,192.168.10.21:2181,192.168.10.22:2181 --topic test
六、Kafka 架构深入
6.1Kafka 工作流程及文件存储机制
Kafka 中消息是以 topic 进行分类的,生产者生产消息,消费者消费消息,都是面向 topic 的。
topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。Producer 生产的数据会被不断追加到该 log 文件末端,且每条数据都有自己的 offset。 消费者组中的每个消费者,都会实时记录自己消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。
由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据定位效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment。每个 segment 对应两个文件:“.index” 文件和 “.log” 文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,test 这个 topic 有三个分区, 则其对应的文件夹为 test-0、test-1、test-2。
index 和 log 文件以当前 segment 的第一条消息的 offset 命名。
“.index” 文件存储大量的索引信息,“.log” 文件存储大量的数据,索引文件中的元数据指向对应数据文件中 message 的物理偏移地址。
数据可靠性保证
为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后, 都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。
数据一致性问题
LEO:指的是每个副本最大的 offset;
HW:指的是消费者能见到的最大的 offset,所有副本中最小的 LEO。
(1)follower 故障 follower 发生故障后会被临时踢出 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合),待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。
(2)leader 故障 leader 发生故障之后,会从 ISR 中选出一个新的 leader, 之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。
注:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
//ack 应答机制 对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡选择。
当 producer 向 leader 发送数据时,可以通过 request.required.acks 参数来设置数据可靠性的级别: ●0:这意味着producer无需等待来自broker的确认而继续发送下一批消息。这种情况下数据传输效率最高,但是数据可靠性确是最低的。当broker故障时有可能丢失数据。
●1(默认配置):这意味着producer在ISR中的leader已成功收到的数据并得到确认后发送下一条message。如果在follower同步成功之前leader故障,那么将会丢失数据。
●-1(或者是all):producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成,可靠性最高。但是如果在 follower 同步完成后,broker 发送ack 之前,leader 发生故障,那么会造成数据重复。
三种机制性能依次递减,数据可靠性依次递增
注:在 0.11 版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。在 0.11 及以后版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据, Server 端都只会持久化一条。
七、 部署 Zookeeper+Kafka 集群
7.1部署 Filebeat
cd /usr/local/filebeatvim filebeat.yml
filebeat.prospectors:- type: logenabled: truepaths:- /var/log/httpd/access_logtags: ["access"]- type: logenabled: truepaths:- /var/log/httpd/error_logtags: ["error"]......#添加输出到 Kafka 的配置
output.kafka:enabled: truehosts: ["192.168.10.17:9092","192.168.10.21:9092","192.168.10.22:9092"] #指定 Kafka 集群配置topic: "httpd" #指定 Kafka 的 topic#启动 filebeat
./filebeat -e -c filebeat.yml
7.2部署 ELK,在 Logstash 组件所在节点上新建一个 Logstash 配置文件
cd /etc/logstash/conf.d/vim kafka.conf
input {kafka {bootstrap_servers => "192.168.10.17:9092,192.168.10.21:9092,192.168.10.22:9092" #kafka集群地址topics => "httpd" #拉取的kafka的指定topictype => "httpd_kafka" #指定 type 字段codec => "json" #解析json格式的日志数据auto_offset_reset => "latest" #拉取最近数据,earliest为从头开始拉取decorate_events => true #传递给elasticsearch的数据额外增加kafka的属性数据}
}output {if "access" in [tags] {elasticsearch {hosts => ["192.168.10.15:9200"]index => "httpd_access-%{+YYYY.MM.dd}"}}if "error" in [tags] {elasticsearch {hosts => ["192.168.10.15:9200"]index => "httpd_error-%{+YYYY.MM.dd}"}}stdout { codec => rubydebug }
}#启动 logstash
logstash -f kafka.conf
注:生产黑屏操作es时查看所有的索引:curl -X GET "localhost:9200/_cat/indices?v"
7.3浏览器访问 http://192.168.10.13:5601 登录 Kibana
单击“Create Index Pattern”按钮添加索引“filebeat_test-*”,单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息。
相关文章:

Zookeeper集群+Kafka集群
目录 一丶Zookkeeper概述 二、Zookeeper 特点 2.1Zookeeper 应用场景 2.2Zookeeper 选举机制 2.2.1第一次启动选举机制 2.2.2非第一次启动选举机制 三、部署 Zookeeper 集群 3.1//安装 JDK 3.2安装 Zookeeper 3.2.1修改配置文件 3.2.2拷贝配置好的 Zookeeper 配置文件…...

管理类联考——逻辑——论证逻辑——汇总篇——目录+提炼
文章目录 一、削弱方法关系的削弱必要方法的削弱因果推理的削弱果因推理的削弱概念跳跃的削弱数量比例的削弱比例因果的削弱 二、支持方法关系的支持必要方法的支持因果推理的支持果因推理的支持概念跳跃的支持数量比例的支持比例因果的支持 三、假设方法关系的假设必要方法的假…...

用excel格式书写的接口用例执行脚本
创建测试用例和测试结果集文件夹: excel编写的接口测试用例如下: 1 encoding 响应的编码格式。所测项目大部分是utf-8,有一个特殊项目是utf-8-sig 2 params 对应requests的params 3 data,对应requests的data 有些参数是动态的&a…...

【flink】Chunk splitting has encountered exception
执行任务报错: Chunk splitting has encountered exception 错误信息截图: 完整的错误信息: 16:30:43,911 ERROR org.apache.flink.runtime.source.coordinator.SourceCoordinator [SourceCoordinator-Source: CDC Sourceorg.jobslink.flink…...

单元测试用例分组 demo
文章目录 目标1、使用 Category 进行用例分组(1)设置用例组(2)编写测试类,case设置对应的用例组(3)编写执行类(4)查看运行结果(5)联系项目 2、参数…...

观察者模式(Observer)
观察着模式是一种行为设计模式,可以用来定义对象间的一对多依赖关系,使得每当一个对象状态发生改变时,其相关依赖对象皆得到通知并被自动更新。 观察者模式又叫做发布-订阅(Publish/Subscribe)模式、模型-视图…...

20天学会rust(二)rust的基础语法篇
在第一节(20天学rust(一)和rust say hi)我们配置好了rust的环境,并且运行了一个简单的demo——practice-01,接下来我们将从示例入手,学习rust的基础语法。 首先来看下项目结构: 项目…...

Stephen Wolfram:嵌入的概念
The Concept of Embeddings 嵌入的概念 Neural nets—at least as they’re currently set up—are fundamentally based on numbers. So if we’re going to to use them to work on something like text we’ll need a way to represent our text with numbers. And certain…...

springboot,swagger多个mapper包,多个controller加载问题
启动类添加MapperScan({"xxx.xxx.xxx.mapper","xxx.xxx.xxx.mapper"}) swagger配置类添加 Bean public Docket api01() {return new Docket(DocumentationType.SWAGGER_2)//.enable(swagger_is_enabl).apiInfo(new ApiInfoBuilder().title("你的title…...

湖大CG满分教程:作业训练四编程题20. 回文串(暴力×动态规划算法√)
问题描述 “回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。给你一个字符串,问最少在字符串尾添加多少字符,可以使得字符串变为回文串。 输入格式 有多组测试数据。 每组测试数据第一行是一个正整数N…...

使用toad库进行机器学习评分卡全流程
1 加载数据 导入模块 import pandas as pd from sklearn.metrics import roc_auc_score,roc_curve,auc from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import numpy as np import math import xgboost as xgb …...

Python数据容器——列表(list)
数据容器入门 Python中的数据容器: 一种可以容纳多份数据的数据类型,容纳的每一份数据称之为1个元素 每一个元素,可以是任意类型的数据,如字符串、数字、布尔等。 数据容器根据特点的不同,如:是否支持重复元…...

Linux CEF(Chromium Embedded Framework)源码下载编译详细记录
Linux CEF(Chromium Embedded Framework)源码下载编译 背景 由于CEF默认的二进制分发包不支持音视频播放,需要自行编译源码,将ffmpeg开关打开才能支持。这里介绍的是Linux平台下的CEF源码下载编译过程。 前置条件 下载的过程非…...

Adaptive AUTOSAR—— Communication Management 3.1
9 Communication Management 9.1 What is Communication Management? 通信管理是自适应平台架构中的一个功能集群。 作为一个功能集群,通信管理向应用程序提供了一个C++ API,实现了面向服务的通信。服务是一个由应用程序提供的功能单元,可以在运行时被另一个应用程序动态…...

VMnet0 桥接设置
VMnet0 一定要设置为你的硬件物理网卡,不能设置自动,不然后,网线一断,就再也连不上了。必须重启电脑才能连上,这个问题找了很久才找到。 下面有个hyper-V虚拟网卡,如果选自动的话,物理网卡一掉…...

Sublime Text 4 Build 4151 4152 发布及注册方法
Sublime Text 是一个商业代码编辑器。它原生支持许多编程语言和标记语言,用户可以通过插件来扩展它的功能,这些插件通常是由社区建立的,并以自由软件许可证的形式维护。为了方便插件,Sublime Text 有一个 Python API。 Sublime T…...

第八篇: K8S Prometheus Operator实现Ceph集群企业微信机器人告警
Prometheus Operator实现Ceph集群企业微信告警 实现方案 我们的k8s集群与ceph集群是部署在不同的服务器上,因此实现方案如下: (1) ceph集群开启mgr内置的exporter服务,用于获取ceph集群的metrics (2) k8s集群通过 Service Endponit Ser…...

软件单元测试
单元测试目的和意义 对于非正式的软件(其特点是功能比较少,后续也不有新特性加入,不用负责维护),我们可以使用debug单步执行,内存修改,检查对应的观测点是否符合要求来进行单元测试,…...

Redis | 集群模式
Redis | 集群模式 随着互联网应用规模的不断扩大,单一节点的数据库性能已经无法满足大规模应用的需求。为了提高数据库的性能和可扩展性,分布式数据库成为了解决方案之一。Redis 作为一个高性能的内存数据库,自然也有了自己的分布式部署方式…...

8.3day04git+数据结构
文章目录 git版本控制学习高性能的单机管理主机的心跳服务算法题 git版本控制学习 一个免费开源,分布式的代码版本控制系统,帮助开发团队维护代码 作用:记录代码内容,切换代码版本,多人开发时高效合并代码内容 安装g…...

04-5_Qt 5.9 C++开发指南_QComboBox和QPlainTextEdit
文章目录 1. 实例功能概述2. 源码2.1 可视化UI设计2.2 widget.h2.3 widget.cpp 1. 实例功能概述 QComboBox 是下拉列表框组件类,它提供一个下拉列表供用户选择,也可以直接当作一个QLineEdit 用作输入。OComboBox 除了显示可见下拉列表外,每个…...

Sqlserver_Oracle_Mysql_Postgresql不同关系型数据库之主从延迟的理解和实验
关系型数据库主从节点的延迟是否和隔离级别有关联,个人认为两者没有直接关系,主从延迟在关系型数据库中一般和这两个时间有关:事务日志从主节点传输到从节点的时间事务日志在从节点的应用时间 事务日志从主节点传输到从节点的时间࿰…...

Clickhouse学习系列——一条SQL完成gourp by分组与不分组数值计算
笔者在近一两年接触了Clickhouse数据库,在项目中也进行了一些实践,但一直都没有一些技术文章的沉淀,近期打算做个系列,通过一些具体的场景将Clickhouse的用法进行沉淀和分享,供大家参考。 首先我们假设一个Clickhouse数…...

做好“关键基础设施提供商”角色,亚马逊云科技加快生成式AI落地
一场关于生产力的革命已在酝酿之中。全球管理咨询公司麦肯锡在最近的报告《生成式人工智能的经济潜力:下一波生产力浪潮》中指出,生成式AI每年可能为全球经济增加2.6万亿到4.4万亿美元的价值。在几天前的亚马逊云科技纽约峰会中,「生成式AI」…...

如何使用 ChatGPT 规划家居装修
你正在计划家庭装修项目,但不确定从哪里开始?ChatGPT 随时为你提供帮助。从集思广益的设计理念到估算成本,ChatGPT 可以简化你的家居装修规划流程。在本文中,我们将讨论如何使用 ChatGPT 有效地规划家居装修,以便你的项…...

题解 | #1002.Random Nim Game# 2023杭电暑期多校7
1002.Random Nim Game 诈骗博弈题 题目大意 Nim是一种双人数学策略游戏,玩家轮流从不同的堆中移除棋子。在每一轮游戏中,玩家必须至少取出一个棋子,并且可以取出任意数量的棋子,条件是这些棋子都来自同一个棋子堆。走最后一步棋…...

篇九:组合模式:树形结构的力量
篇九:“组合模式:树形结构的力量” 开始本篇文章之前先推荐一个好用的学习工具,AIRIght,借助于AI助手工具,学习事半功倍。欢迎访问:http://airight.fun/。 另外有2本不错的关于设计模式的资料,…...

【注册表】windows系统注册表常用修改方案
文章目录 ◆ 修改IE浏览器打印页面参数设置◆气泡屏幕保护◆彩带屏幕保护程序◆过滤IP(适用于WIN2000)◆禁止显示IE的地址栏◆禁止更改IE默认的检查(winnt适用)◆允许DHCP(winnt适用)◆局域网自动断开的时间(winnt适用)◆禁止使用“重置WEB设置”◆禁止更…...

ant-design-vue 4.x升级问题-样式丢失问题
[vue] ant-design-vue 4.x升级问题-样式丢失问题 项目环境问题场景解决方案 该文档是在升级ant-design-vue到4.x版本的时候遇到的问题 项目环境 "vue": "^3.3.4", "ant-design-vue": "^4.0.0", "vite": "^4.4.4&quo…...

【果树农药喷洒机器人】Part3:变量喷药系统工作原理介绍
本专栏介绍:免费专栏,持续更新机器人实战项目,欢迎各位订阅关注。 关注我,带你了解更多关于机器人、嵌入式、人工智能等方面的优质文章! 文章目录 一、变量喷药系统工作原理二、液压通路设计与控制系统封装2.1液压通路…...