当前位置: 首页 > news >正文

卡尔曼滤波算法demo

在这里插入图片描述

代码

learn_kalman.py

#coding=utf-8
import numpy as np
import time
from kinematic_model import freedrop
from controller import kalman_filterimport matplotlib.pyplot as plt
#   支持中文
import matplotlib as mpl
mpl.rcParams['font.family']='SimHei'
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号class Scene:'''场景'''def __init__(self,windSpd=np.array([0.7,0.3,0.0]),\initialSpd=np.array([120.0,0.0,120.0])):'''我现在是一个防空兵防空炮打出一枚炮弹,真实的炮弹轨迹,它可能会受风的影响,可能会有随机因素导致偏离目标导致打不中飞机...我们可以使用指挥所观测到的炮弹轨迹,因为炮弹距离很远,所以这个观测不是很靠谱...所以我们所使用了卡尔曼滤波算法,得到了一条真实的炮弹轨迹...'''#   真实的炮弹self.realShell=freedrop.FreeDropBinder(windSpd=windSpd,initialSpd=initialSpd)#   理论上炮弹的落点self.theoShell=freedrop.FreeDropBinder(windSpd=np.array([0.0,0.0,0.0]),initialSpd=initialSpd,randRatio=0.0)#   卡卡尔曼滤波器self.kf=kalman_filter.KF_Onmi3D()self.kf.initState[3:6]=initialSpd#   绘图区self.fig=plt.figure('炮弹弹道图')self.ax = self.fig.gca(projection="3d")#   数据缓存self.realCoord=[]self.theoCoord=[]self.kalmanCoord=[]self.observeCoord=[]def UpdateData(self,delta_t=0.2):'''更新虚拟环境的数据:return:'''#   真实炮弹轨迹self.realShell.StateUpdate(delta_t=delta_t)#   理论炮弹轨迹self.theoShell.StateUpdate(delta_t=delta_t)#   观测到的炮弹轨迹self.observeCoord.append(self.realShell.position + np.random.random(3) * self.realShell.position[0]/20.0 - self.realShell.position[0]/40.0)#   卡尔曼滤波'''基于卡尔曼滤波,结合理论炮弹轨迹 对观测的炮弹轨迹进行修正'''self.kf.Predict(velocity=self.theoShell.spd)Hybrid_Position=self.kf.Update(self.observeCoord[-1])#   绘图(真实的弹道)plt.cla()self.ax.set_xlim(0, 1000)self.ax.set_ylim(-200, 200)self.ax.set_zlim(0, 300)self.ax.set_xlabel("X坐标(米)")self.ax.set_ylabel("Y坐标(米)")self.ax.set_zlabel("X坐标(米)")#   计算三个类型的炮弹self.realCoord.append(np.copy(self.realShell.position))     #   真实炮弹self.theoCoord.append(np.copy(self.theoShell.position))     #   理论模型self.kalmanCoord.append(np.copy(Hybrid_Position))self.curve2Draw=np.array(self.realCoord)self.curve2 = np.array(self.observeCoord)self.curve3 = np.array(self.theoCoord)self.curve4 = np.array(self.kalmanCoord)self.ax.plot(self.curve2Draw[:,0],self.curve2Draw[:,1],self.curve2Draw[:,2],label='真实炮弹',color='red')self.ax.scatter(self.curve2[:, 0], self.curve2[:, 1], self.curve2[:, 2],'rv+', label='炮弹观测数据', color='blue',alpha=0.5,s=1)self.ax.plot(self.curve3[:, 0], self.curve3[:, 1], self.curve3[:, 2], label='炮弹理论轨迹', color='green', alpha=0.5)self.ax.plot(self.curve4[:, 0], self.curve4[:, 1], self.curve4[:, 2], label='炮弹融合轨迹', color='yellow', alpha=1.0)self.ax.legend()plt.pause(0.05)#   开始模拟环境
#plt.ion()s=Scene()for i in range(1000):if s.realShell.position[2]<0: breaks.UpdateData()
plt.ioff()
plt.show()

freerop.py

#coding=utf-8
import timeimport numpy as np
'''3D自由落体模型(含有风阻)
'''class FreeDropBinder:'''为实体绑定自由落体属性'''def __init__(self,windSpd=np.array([0.0,0.0,0.0]),resRatio=0.0004,G=9.8,initialPos=np.array([0.0,0.0,0.0]),initialSpd=np.array([0.0,0.0,0.0]),randRatio=0.1):''':param windSpd:  风速(三维):param resRatio: 风阻比例(全向):param G: 重力加速度:param initialPos:  物体初始位置:param initialSpd:  物体初始速度'''self.position=initialPosself.spd=initialSpdself.windSpd=windSpdself.resRatio=resRatioself.G=Gself.randRatio=randRatiodef StateUpdate(self,delta_t=0.05,driveForce=np.array([0.0,0.0,0.0])):'''更新实体位置信息:param delta_t::return:'''#   重力因素self.spd+=np.array([0,0,-self.G*delta_t])#   风阻因素self.spd=np.where(self.spd>0,self.spd-self.resRatio*self.spd*self.spd,self.spd)self.spd = np.where(self.spd <= 0, self.spd + self.resRatio * self.spd * self.spd, self.spd)#   风力因素#   驱动因素self.spd+=(driveForce+self.windSpd)*delta_t#   随机因素self.spd+=(np.random.rand(3)-0.5)*2*self.randRatio*delta_t#   更新坐标self.position=self.position+self.spd*delta_tif __name__=='__main__':box=FreeDropBinder(initialSpd=np.array([10.0,0.0,100.0]))for i in range(30):print(box.Update())

kalman_filter.py

import numpy as np
import matplotlib.pyplot as pltclass KF_Onmi3D:'''三维,无方向场景下的卡尔曼滤波算法模组'''def __init__(self):# 初始状态                 x  y  z vx vy vzself.initState=np.array([0, 0, 0, 0, 0, 0],dtype=np.float)# 初始协方差,可以看出是每个维度都是一一对应的关系'''[ 1 0 0 0 0 0 ][ 0 1 0 0 0 0 ][ 0 0 1 0 0 0 ][ 0 0 0 1 0 0 ][ 0 0 0 0 1 0 ][ 0 0 0 0 0 1 ]'''self.initCov=np.eye(6)#   状态转移矩阵self.stateTransMatrix=np.array([[1,0,0,1,0,0],[0,1,0,0,1,0],[0,0,1,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]],dtype=np.float)#   观测矩阵                    X  Y  Z  Vx Vy Vzself.observeMatrix=np.array([[1, 0, 0, 0, 0, 0],[0, 1, 0, 0, 0, 0],[0, 0, 1, 0, 0, 0]],dtype=np.float)#   过程噪声(先设定一个初始值,这个需要跟据你系统的评估来确定)self.procNoise=np.eye(6)*0.001#   观测噪声的协方差矩阵self.observeNoiseCov=np.eye(3)*1self.InitParams()def InitParams(self):'''初始化状态变量:return:'''self.currentState=self.initState.copy()self.predictState=self.initState.copy()self.currentCov=self.initCovself.predictedCov=self.currentCovdef Predict(self,velocity=np.array([0,0,0],dtype=np.float)):'''预测过程:param v::return:'''#   基于当前的速度,预测机器人下一个状态的状态数值self.predictState=self.stateTransMatrix.dot(self.currentState)#   预测三维环境下的协方差矩阵self.predictedCov=self.stateTransMatrix.dot(self.currentCov).dot(self.stateTransMatrix.T)+self.procNoise#   把速度赋值给状态中的“速度”属性self.currentState[3:6] = velocitydef Update(self,observed_Pos=np.array([0,0,0],dtype=np.float)):'''更新数据:param observed_Pos: 带有误差的位置观测值:return:'''#   卡尔曼增益(Kalman Gain)计算'''K=\frac{估计的误差}{估计的误差+测量的误差}=\frac{\hat{P_k}C}{C\hat{P_k}C^T+Error}'''self.Kalman_Gain = self.predictedCov.dot(self.observeMatrix.T) \.dot(np.linalg.inv( \self.observeMatrix.dot(self.predictedCov).dot(self.observeMatrix.T) + self.observeNoiseCov))'''基于Kalman Gain估算当前状态'''self.currentState = self.predictState + self.Kalman_Gain.dot(observed_Pos-self.observeMatrix.dot(self.predictState))'''当前协方差估计'''self.currentCov = (np.eye(6) - self.Kalman_Gain.dot(self.observeMatrix)).dot(self.predictedCov)return self.currentState[0:3]

参考

https://www.bilibili.com/video/BV1gF411f78t/?spm_id_from=333.337.top_right_bar_window_history.content.click&vd_source=667c3d14dbb51ec849c0bc7c38329d10

相关文章:

卡尔曼滤波算法demo

代码 learn_kalman.py #codingutf-8 import numpy as np import time from kinematic_model import freedrop from controller import kalman_filterimport matplotlib.pyplot as plt # 支持中文 import matplotlib as mpl mpl.rcParams[font.family]SimHei plt.rcParams[a…...

MySQL游标(二十九)

二八佳人体似酥&#xff0c;腰悬利剑斩愚夫&#xff0c;虽然不见人头落,暗里教君骨髓枯。 上一章简单介绍了MySQL流程控制(二十八) ,如果没有看过,请观看上一章 一. 游标 一.一 什么是游标 虽然我们也可以通过筛选条件 WHERE 和 HAVING&#xff0c;或者是限定返回记录的关键…...

内生安全构建数据存储

一、数据安全成为防护核心&#xff0c;存储安全防护不容有失 1、数据作为企业的核心资产亟需重点保护&#xff0c;数据安全已成网络空间防护核心 2、国家高度重视关键信息基础设施的数据安全&#xff0c;存储安全已成为审核重点 二、存储安全是数据安全的关键一环&#xff0c;应…...

Docker+Consul+Registrator 实现服务注册与发现

第四阶段 时 间&#xff1a;2023年8月8日 参加人&#xff1a;全班人员 内 容&#xff1a; DockerConsulRegistrator 实现服务注册与发现 目录 一、服务注册中心引言 CAP理论是分布式架构中重要理论&#xff1a; 二、服务注册中心软件 &#xff08;一&#xff09;Zoo…...

深入学习JVM —— GC垃圾回收机制

前言 前面荔枝已经梳理了有关JVM的体系结构和类加载机制&#xff0c;也详细地介绍了JVM在类加载时的双亲委派模型&#xff0c;而在这篇文章中荔枝将会比较详细地梳理有关JVM学习的另一大重点——GC垃圾回收机制的相关知识&#xff0c;重点了解的比如对象可达性的判断、四种回收…...

Centos7.6 + Apache Ranger 2.4.0编译(docker方式)

目录 一、Ranger简介 1、组件列表 2、支持的数据引擎服务 二、主机环境准备 1、关闭防火墙 2、关闭SELINUX 3、安装docker 4、下载Ranger源码包 5、下载Maven安装包 三、编译Ranger源码 1、修改官方包中的build_ranger_using_docker.sh 2、运行脚本编译 3、编译检…...

LVS-DR模式集群配置

四台虚拟机 node1&#xff1a;128 node2&#xff1a;135 RS端&#xff1a; node3&#xff1a;130 node4&#xff1a;132 [rootnode2 ~]# yum install -y ipvsadm #配置LVS虚拟IP&#xff0c;没有ifconfig命令则先安装 [rootnode2 ~]# yum install net-tools -y #配置VIP [root…...

【数据分析】pandas( 二)

目录 简介&#xff1a; 一&#xff0c;1.1来自Series字典或字典 1.2 来自ndarray或者列表的字典&#xff1a; 1.3来自结构化或记录数组; 1.4来自字典列表&#xff1a; 1.4来自元组的字典&#xff1a; 1.5 来自Series 二&#xff0c;代替构造函数&#xff1a; 2.1DataFram…...

ffmpeg工具实用命令

说明&#xff1a;ffmpeg是一款非常好用的媒体操作工具&#xff0c;包含了许多对于视频、音频的操作&#xff0c;有些视频播放器里面实际上就是使用了ffmpeg。本文介绍ffmpeg的使用以及一些较为实用的命令。 安装 ffmpeg是命令行操作的&#xff0c;不需要安装&#xff0c;可在…...

zabbix API笔记

博客园原文 python简单demo 输出id为111主机的主机群组信息 import requests import json request_headers {"Content-Type": "application/json"} zabbix_url "http://xxx.xxx.xxx.xxx:8080/zabbix/api_jsonrpc.php" get_hostgroup_from_h…...

[HDLBits] Mt2015 q4a

Module A is supposed to implement the function z (x^y) & x. Implement this module. module top_module (input x, input y, output z);assign z(x^y)&x; endmodule...

HarmonyOS NEXT,生命之树初长成

在不同的神话体系中&#xff0c;都有着关于生命之树的记载。 比如在北欧神话中&#xff0c;一株巨大的树木联结着九大世界&#xff0c;其被称为“尤克特拉希尔”Yggdrasill。在中国的《山海经》中&#xff0c;也有着“建木”的传说&#xff0c;它“有九欘&#xff0c;下有九枸&…...

PHPstudy配置伪静态步骤,tp5.1的框架

搜索mod_rewrite.so&#xff0c;然后去掉前面的#&#xff08;即放开注释&#xff09; 2.找到index.php 同级文件.htaccess&#xff08;没有就新建&#xff09; 这些是tp5.1自带的内容&#xff0c;把它注释掉&#xff0c;是错误的内容&#xff0c;添加下面的这段配置 #<If…...

LeetCode:Hot100的python版本

94. 二叉树的中序遍历...

rv1126更新rknpu驱动教学

测试平台&#xff1a;易佰纳rv1126 38板 查看板端版本-------------------------------------------------- 1&#xff1a;查看npu驱动版本 dmesg | grep -i galcore&#xff0c;可以看到版本为6.4.3.5 2&#xff1a;查看rknn-server版本 strings /usr/bin/rknn_server | g…...

[机器学习]线性回归模型

线性回归 线性回归&#xff1a;根据数据&#xff0c;确定两种或两种以上变量间相互依赖的定量关系 函数表达式&#xff1a; y f ( x 1 , x 2 . . . x n ) y f(x_1,x_2...x_n) yf(x1​,x2​...xn​) ​ 回归根据变量数分为一元回归[ y f ( x ) yf(x) yf(x)]和多元回归[ y …...

Vue基于php医院预约挂号系统_6nrhh

随着信息时代的来临&#xff0c;过去的管理方式缺点逐渐暴露&#xff0c;对过去的医院预约挂号管理方式的缺点进行分析&#xff0c;采取计算机方式构建医院预约挂号系统。本文通过阅读相关文献&#xff0c;研究国内外相关技术&#xff0c;开发并设计一款医院预约挂号系统的构建…...

2023-08-07力扣今日六题-不错题

链接&#xff1a; 剑指 Offer 04. 二维数组中的查找 题意&#xff1a; 一个二维矩阵数组&#xff0c;在行上非递减&#xff0c;列上也非递减 解&#xff1a; 虽然在行列上非递减&#xff0c;但是整体并不有序&#xff0c;第一行存在大于第二行的数字&#xff0c;第一列存在…...

Elasticsearch搜索出现NAN异常

原因分析 Elasticsearch默认的打分&#xff0c;一般是不会出现异常的之所以会出现NAN异常&#xff0c;往往是因为我们重新计算了打分&#xff0c;使用了function_score核心原因是在function_score中&#xff0c;出现了计算异常&#xff0c;比如 0/0,比如log1p(x),x为负数等 真…...

(杭电多校)2023“钉耙编程”中国大学生算法设计超级联赛(6)

1001 Count 当k在区间(1n)/2的左边时,如图,[1,k]和[n-k1,n]完全相同,所以就m^(n-k) 当k在区间(1n)/2的右边时,如图,[1,n-k1]和[k,n]完全相同,所以也是m^(n-k) 别忘了特判,当k等于n时,n-k为0,然后a1a1,a2a2,..anan,所以没什么限制,那么就是m^n AC代码&#xff1a; #includ…...

【JavaScript 】浏览器事件处理

1. 什么是浏览器事件? 浏览器事件是指在网页中发生的各种交互和动作,例如用户点击按钮、页面加载完成、输入框文本变化等。通过处理这些事件,可以编写相应的JavaScript代码来实现特定的功能和行为。 2. 常见的浏览器事件 以下是一些常见的浏览器事件及其用途的详细介绍: c…...

(力扣)用两个队列实现栈---C语言

分享一首歌曲吧&#xff0c;希望在枯燥的刷题生活中带给你希望和勇气&#xff0c;加油&#xff01; 题目&#xff1a; 请你仅使用两个队列实现一个后入先出&#xff08;LIFO&#xff09;的栈&#xff0c;并支持普通栈的全部四种操作&#xff08;push、top、pop 和 empty&#…...

使用 RediSearch 在 Redis 中进行全文检索

原文链接&#xff1a; 使用 RediSearch 在 Redis 中进行全文检索 Redis 大家肯定都不陌生了&#xff0c;作为一种快速、高性能的键值存储数据库&#xff0c;广泛应用于缓存、队列、会话存储等方面。 然而&#xff0c;Redis 在原生状态下并不支持全文检索功能&#xff0c;这使…...

[Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序

1.今天开发了一套服务程序&#xff0c;使用的是Odbc连接MySql数据库&#xff0c; 在我本机用VS打开程序时&#xff0c;访问一切正常&#xff0c;当发布出来装在电脑上&#xff0c;连接数据库时提示&#xff1a; [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定…...

springboot生成表结构和表数据sql

需求 业务背景是需要某单机程序需要把正在进行的任务导出&#xff0c;然后另一台电脑上单机继续运行&#xff0c;我这里选择的方案是同步SQL形式&#xff0c;并保证ID随机&#xff0c;多个数据库不会重复。 实现 package com.nari.web.controller.demo.controller;import cn…...

代码随想录—力扣算法题:209长度最小的子数组.Java版(示例代码与导图详解)

版本说明 当前版本号[20230808]。 版本修改说明20230808初版 目录 文章目录 版本说明目录209.长度最小的子数组思路暴力解法滑动窗口 两种方法的区别总结 209.长度最小的子数组 力扣题目链接 更多内容可点击此处跳转到代码随想录&#xff0c;看原版文件 给定一个含有 n 个…...

81 | Python可视化篇 —— Seaborn数据可视化

Seaborn是Python中一个基于Matplotlib的高级数据可视化库,它提供了更简单的API和更美观的图形样式,适用于数据探索和展示。在本教程中,我们将介绍Seaborn的基本概念和用法,并通过一些示例演示如何使用Seaborn来创建各种图表和图形。 文章目录 1. 导入Seaborn库和数据2. 数据…...

解决Error running XXXApplicationCommand line is too long.报错

测试IDEA版本&#xff1a;2019.2.4 &#xff0c;2020.1.3 文章目录 一. 问题场景二. 报错原因2.1 为什么命令行过长会导致这种问题? 三. 解决方案3.1 方案一3.2 方案二 一. 问题场景 当我们从GitHub或公司自己搭建的git仓库上拉取项目代码时&#xff0c;会出现以下错误 报错代…...

【Linux】—— 进程等待 waitwaitpid

序言&#xff1a; 之前讲过&#xff0c;子进程退出&#xff0c;父进程如果不管不顾&#xff0c;就可能造成‘僵尸进程’的问题&#xff0c;进而造成内存泄漏。因此&#xff0c;为了解决这个问题&#xff0c;就需要用到有关 “进程等待” 的基本知识&#xff01;&#xff01;&am…...

el-tree 懒加载数据,增删改时局部刷新实现

1.数据过多时进行懒加载孩子节点&#xff0c;根据层级传参获取后端孩子数据 懒加载主要部分&#xff1a; 1参数: :load"loadNode" lazy :props"defaultProps" 2.defaultProps 需要设置isLeaf: isLeaf,去除最后一层孩子节点的展开图表 defaultProps: { ch…...

公司网站友情链接怎么做副链/谷歌浏览器下载安装2022最新版

文章目录1. 简介2. 示例2.1 文件内容修改2.2 在某一行前面插入一行2.3 在某一行后面插入一行2.4 删除某一行2.5 末尾加入一行2.6 替换或添加某一行– ansible 快速学习手册 1. 简介 lineinfile:文件内容修改、在某行前面添加一行、在某行后面添加一行、删除某一行、末尾加入一…...

中国体育直播在线观看斯诺克赛/西安seo网站关键词

AngularJS 1.2版本中提供了Controller As语法&#xff0c;简单说就是可以在Controller中使用this来替代$scope&#xff0c;使得Controller更像一个传统的JS类&#xff0c;相对于$scope的继承树要理解上要简单一些。 基础用法 传统的Controller是这样写的&#xff1a; app.contr…...

苏州大型网站建设/今天国内最新消息

初识Maven: 一、Maven的基本概念 Maven(翻译为"专家"&#xff0c;"内行")是跨平台的项目管理工具。主要服务于基于Java平台的项目构建&#xff0c;依赖管理和项目信息管理。 1.1、项目构建 项目构建过程包括【清理项目】→【编译项目】→【测试项目】→【生…...

建个免费的销售网站/国外广告联盟平台

转自&#xff1a;http://www.ibm.com/developerworks/cn/linux/l-devmapper/ Linux 内核中的 Device Mapper 机制本文结合具体代码对 Linux 内核中的 device mapper 映射机制进行了介绍。Device mapper 是 Linux 2.6 内核中提供的一种从逻辑设备到物理设备的映射框架机制&#…...

中科汇联网站建设手册/百度首页排名优化公司

Description L公司有N个工厂&#xff0c;由高到底分布在一座山上。如图所示&#xff0c;工厂1在山顶&#xff0c;工厂N在山脚。由于这座山处于高原内 陆地区&#xff08;干燥少雨&#xff09;&#xff0c;L公司一般把产品直接堆放在露天&#xff0c;以节省费用。突然有一天&…...

在什么网站上做兼职靠谱/优化大师怎么下载

课程首页地址&#xff1a;http://blog.csdn.net/sxhelijian/article/details/7910565眼见到了期末&#xff0c;同学们各种忙与学期初、学期中完全不同。积累代码行的事情搁置一边可以理解&#xff0c;也不应在此时再抓了。第17周只要求一个项目&#xff0c;另外可以总结整个课程…...