DIDL5_数值稳定性和模型初始化
数值稳定性和模型初始化
- 数值稳定性
- 梯度不稳定的影响
- 推导
- 什么是梯度消失?
- 什么是梯度爆炸?
- 如何解决数值不稳定问题?——参数初始化
- 参数初始化的几种方法
- 默认初始化
- Xavier初始化
- 小结
当神经网络变得很深的时候,数值特别容易不稳定。
我们实现的每个模型都是根据某个预先指定的分布来初始化模型的参数。
初始化方案的选择在神经网络学习中起着举足轻重的作用, 它对保持数值稳定性至关重要
数值稳定性
梯度不稳定的影响
糟糕初始化参数可能会导致我们在训练时遇到梯度爆炸或梯度消失。
不稳定梯度带来的风险不止在于数值表示; 不稳定梯度也威胁到我们优化算法的稳定性。
- 梯度爆炸(gradient exploding)问题: 参数更新过大,破坏了模型的稳定收敛;
- 梯度消失(gradient vanishing)问题: 参数更新过小,在每次更新时几乎不会移动,导致模型无法学习。
推导
考虑一个具有LLL层、输入xxx和输出ooo的深层网络。每一层lll由变换flf_lfl定义, 该变换的参数为权重W(l)W^{(l)}W(l), 其隐藏变量是h(l)h^{(l)}h(l)(令 h0=xh^{0} = xh0=x)。
该网络可以表示为:
h(l)=fl(h(l−1))因此 o=fL∘…∘f1(x).\mathbf{h}^{(l)} = f_l (\mathbf{h}^{(l-1)}) \text{ 因此 } \mathbf{o} = f_L \circ \ldots \circ f_1(\mathbf{x}).h(l)=fl(h(l−1)) 因此 o=fL∘…∘f1(x).
如果所有隐藏变量和输入都是向量, 我们可以将o\mathbf{o}o关于任何一组参数W(l)\mathbf{W}^{(l)}W(l)的梯度写为下式:
∂W(l)o=∂h(L−1)h(L)⏟M(L)=def⋅…⋅∂h(l)h(l+1)⏟M(l+1)=def∂W(l)h(l)⏟v(l)=def.\partial_{\mathbf{W}^{(l)}} \mathbf{o} = \underbrace{\partial_{\mathbf{h}^{(L-1)}} \mathbf{h}^{(L)}}_{ \mathbf{M}^{(L)} \stackrel{\mathrm{def}}{=}} \cdot \ldots \cdot \underbrace{\partial_{\mathbf{h}^{(l)}} \mathbf{h}^{(l+1)}}_{ \mathbf{M}^{(l+1)} \stackrel{\mathrm{def}}{=}} \underbrace{\partial_{\mathbf{W}^{(l)}} \mathbf{h}^{(l)}}_{ \mathbf{v}^{(l)} \stackrel{\mathrm{def}}{=}}.∂W(l)o=M(L)=def∂h(L−1)h(L)⋅…⋅M(l+1)=def∂h(l)h(l+1)v(l)=def∂W(l)h(l).
该梯度是L−lL-lL−l个矩阵 M(L)⋅…⋅M(l+1)\mathbf{M}^{(L)} \cdot \ldots \cdot \mathbf{M}^{(l+1)}M(L)⋅…⋅M(l+1)与梯度向量v(l)\mathbf{v}^{(l)}v(l)的乘积。
因此,我们容易受到数值下溢问题的影响. 当将太多的概率乘在一起时,这些问题经常会出现。
什么是梯度消失?
激活函数sigmoid函数,1/(1+exp(−x))1/(1 + \exp(-x))1/(1+exp(−x)),类似于阈值函数。 由于早期的人工神经网络受到生物神经网络的启发, 神经元要么完全激活要么完全不激活(就像生物神经元)的想法很有吸引力。 然而,它却是导致梯度消失问题的一个常见的原因:
当sigmoid函数的输入很大或是很小时,它的梯度都会消失。当反向传播通过许多层时,除非我们在刚刚好的地方, 这些地方sigmoid函数的输入接近于零,否则整个乘积的梯度可能会消失。
当我们的网络有很多层时,除非我们很小心,否则在某一层可能会切断梯度。
更稳定的ReLU系列函数已经成为从业者的默认选择。
什么是梯度爆炸?
矩阵乘积发生了爆炸,这种情况是由于深度网络的初始化导致的,没有机会让梯度下降优化器收敛。
#pytorch
M = torch.normal(0, 1, size=(4,4))
print('一个矩阵 \n',M)
for i in range(100):M = torch.mm(M,torch.normal(0, 1, size=(4, 4)))print('乘以100个矩阵后\n', M)
如何解决数值不稳定问题?——参数初始化
参数初始化是解决(或至少减轻)上述问题的一种方法, 优化期间的注意和适当的正则化也可以进一步提高稳定性。
参数初始化的几种方法
默认初始化
如果我们不指定初始化方法, 框架将使用默认的随机初始化方法,对于中等难度的问题,这种方法通常很有效。
Xavier初始化
某些没有非线性的全连接层输出(例如,隐藏变量)oio_{i}oi的尺度分布。 对于该层ninn_\mathrm{in}nin输入xjx_jxj及其相关权重wijw_{ij}wij,输出由下式给出
oi=∑j=1ninwijxj.o_{i} = \sum_{j=1}^{n_\mathrm{in}} w_{ij} x_j.oi=j=1∑ninwijxj.
现在标准且实用的Xavier初始化的基础, 它以其提出者 (Glorot and Bengio, 2010) 第一作者的名字命名。 通常,Xavier初始化从均值为零,方差σ2=2nin+nout\sigma^2 = \frac{2}{n_\mathrm{in} + n_\mathrm{out}}σ2=nin+nout2的高斯分布中采样权重。 我们也可以将其改为选择从均匀分布中抽取权重时的方差。 注意均匀分布U(−a,a)U(-a, a)U(−a,a)的方差为a23\frac{a^2}{3}3a2。 将a23\frac{a^2}{3}3a2代入到σ2\sigma^2σ2的条件中,将得到初始化值域:
U(−6nin+nout,6nin+nout).U\left(-\sqrt{\frac{6}{n_\mathrm{in} + n_\mathrm{out}}}, \sqrt{\frac{6}{n_\mathrm{in} + n_\mathrm{out}}}\right).U(−nin+nout6,nin+nout6).
尽管在上述数学推理中,“不存在非线性”的假设在神经网络中很容易被违反, 但Xavier初始化方法在实践中被证明是有效的。
小结
- 梯度消失和梯度爆炸是深度网络中常见的问题。在参数初始化时需要非常小心,以确保梯度和参数可以得到很好的控制。
- 需要用启发式的初始化方法来确保初始梯度既不太大也不太小。
- ReLU激活函数缓解了梯度消失问题,这样可以加速收敛。
- 随机初始化是保证在进行优化前打破对称性的关键。
- Xavier初始化表明,对于每一层,输出的方差不受输入数量的影响,任何梯度的方差不受输出数量的影响。
相关文章:
DIDL5_数值稳定性和模型初始化
数值稳定性和模型初始化数值稳定性梯度不稳定的影响推导什么是梯度消失?什么是梯度爆炸?如何解决数值不稳定问题?——参数初始化参数初始化的几种方法默认初始化Xavier初始化小结当神经网络变得很深的时候,数值特别容易不稳定。我…...
火狐浏览器推拽开新的窗口
今天我测试的时候,发现我拖拽一下火狐会打开了新的窗口,谷歌就不会,所以我们要阻止一下默认行为const disableFirefoxDefaultDrop () > {const isFirefox navigator.userAgent.toLowerCase().indexOf(firefox) ! -1if (isFirefox) {docu…...
vrrp+mstp+osfp经典部署案例
LSW1和LSW2和LSW3和LSW4上面启用vrrpmstp组网: vlan 10 全走LSW1出再走AR2到外网,vlan 20 全走LSW2出再走AR3到外网 配置注意:mstp实例的根桥在哪,vrrp的主设备就是谁 ar2和ar3上开nat ar2和ar3可以考虑换成两台防火墙来做&…...
AI_News周刊:第二期
2023.02.13—2023.02.17 1.ChatGPT 登上TIME时代周刊封面 这一转变标志着自社交媒体以来最重要的技术突破。近几个月来,好奇、震惊的公众如饥似渴地采用了生成式人工智能工具,这要归功于诸如 ChatGPT 之类的程序,它对几乎任何查询做出连贯&a…...
【C++的OpenCV】第一课-opencv的间接和安装(Linux环境下)
第一课-目录一、基本介绍1.1 官网1.2 git源码1.3 介绍二、OpenCV的相关部署工作2.1 Linux平台下部署OpenCV一、基本介绍 1.1 官网 opencv官网 注意:官网为英文版本,可以使用浏览器自带的翻译插件进行翻译,真心不推荐大家去看别人翻译的&am…...
为什么建议使用你 LocalDateTime ,而不是 Date
为什么建议使用你 LocalDateTime ,而不是 Date? 在项目开发过程中经常遇到时间处理,但是你真的用对了吗,理解阿里巴巴开发手册中禁用static修饰SimpleDateFormat吗 通过阅读本篇文章你将了解到: 为什么需要LocalDate…...
【大数据】HADOOP-YARN容量调度器Spark作业实战
目录需求配置多队列的容量调度器验证队列资源需求 default 队列占总内存的40%,最大资源容量占总资源的60% ops 队列占总内存的60%,最大资源容量占总资源的80% 配置多队列的容量调度器 在yarn-site.xml里面配置使用容量调度器 <!-- 使用容量调度器…...
平面及其方程
一、曲面和交线的定义 空间解析几何中,任何曲面或曲线都看作点的几何轨迹。在这样的意义下,如果曲面SSS与三元方程: F(x,y,z)0(1)F(x,y,z)0\tag{1} F(x,y,z)0(1) 有下述关系: 曲面 SSS 上任一点的坐标都满足方程(1)(1)(1)不在曲…...
7 配置的封装
概述 IPC设备通常有三种配置信息:一是默认配置,存储了设备所有配置项的默认值,默认配置是只读的,不能修改;二是用户配置,存储了用户修改过的所有配置项;三是私有配置,存储了程序内部使用的一些配置项,比如:固件升级的URL、固件升级标志位等。恢复出厂设置的操作,实际…...
03_Docker 入门
03_Docker 入门 文章目录03_Docker 入门3.1 确保 Docker 已经就绪3.2 运行我们的第一个容器3.3 使用第一个容器3.4 容器命名3.5 重新启动已经停止的容器3.6 附着到容器上3.7 创建守护式容器3.8 容器内部都在干些什么3.9 Docker 日志驱动3.10 查看容器内的进程3.11 Docker 统计信…...
Python 为什么要 if __name__ == “__main__“:
各位读者,你们知道以下两个Python文件有什么区别吗? main1.py def main():output Helloprint(output)if __name__ "__main__":main()main2.py output Hello print(output)当我们直接运行 main1.py 与 main2.py 的时候,程序都…...
455. 分发饼干、376. 摆动序列、53. 最大子数组和
455.分发饼干 题目描述: 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块…...
基于Springbot+微信小程序的购药平台的设计与实现
基于Springbot微信小程序的购药平台的设计与实现 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、…...
aws lambda rust的sdk和自定义运行时
rust的aws sdk 参考资料 https://docs.aws.amazon.com/sdk-for-rust/latest/dg/getting-started.htmlhttps://awslabs.github.io/aws-sdk-rust/https://github.com/awslabs/aws-sdk-rusthttps://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rust_dev_preview rus sd…...
[安装之3] 笔记本加装固态和内存条教程(超详细)
由于笔记本是几年前买的了,当时是4000,现在用起来感到卡顿,启动、运行速度特别慢,就决定换个固态硬盘,加个内存条,再给笔记本续命几年。先说一下加固态硬盘SSD的好处:1.启动快 2.读取延迟小 3.写…...
极客时间左耳听风-高效学习
左耳听风——高效学习篇 P95 | 高效学习:端正学习态度 本人真实⬇️⬇️⬇️⬇️ “ 大部分人都认为自己爱学习,但是: 他们都是只有意识没有行动,他们是动力不足的人。 他们都不知道自己该学什么,他们缺乏方向和目标。…...
MSR寄存器访问
1.介绍 MSR是CPU的一组64位寄存器,每个MSR都有它的地址值(如下图所示),可以分别通过RDMSR 和WRMSR 两条指令进行读和写的操作。 如图中为8个P-state寄存器,地址分别为0xC001 0064 ~ 0xC001 006B,每个寄存…...
ArcGIS:模型构建器实现批量按掩膜提取影像
用研究区域的矢量数据来裁剪栅格数据集时,一般我们使用ArcGIS中的【按掩膜提取工具】。如果需要裁剪的栅格数据太多,处理起来非常的麻烦,虽然ArcGIS中有批处理的功能,但是还是需要手动选择输入输出数据。 如下图,鼠标…...
算法刷题打卡第94天: 找出给定方程的正整数解
找出给定方程的正整数解 难度:中等 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知,但它是单调…...
浅析SAS协议(1):基本介绍
文章目录概述SAS协议发展历程SAS技术特性SAS设备拓扑SAS phySAS地址SAS设备类型SAS协议分层参考链接概述 SAS,全称Serial Attached SCSI,即串行连结SCSI,是一种采用了串行总线的高速互连技术。通过物理上使用串行总线连结,在链路…...
93.【Vue-细刷-02】
Vue-02(十六)、基本列表渲染 (v-for)1.使用v-for遍历数组2.使用v-for遍历对象3.使用v-for遍历字符串(十七)、列表过滤 (filter())1.⭐JS中Change属性的原生状态⭐2.使用watch监听实现3.const {xxx} this 在Vue的作用⭐⭐4.JS箭头函数参数的简写⭐5.使用computed进行计算实现(最…...
Allegro负片层不显示反盘的原因和解决办法
Allegro负片层不显示反盘的原因和解决办法 在用Allegro做PCB设计的时候,负片设计是较为常用的一种方式,有时会出现打开负片层却看不到反盘的情况,如下图 L2层是负片层 L2层仍然只能看到盘 如何才能看到反盘显示的效果,具体操作如下 首先确定L2层层叠里面设置的是负片...
ACM数论 裴蜀定理(贝祖定理)
一.内容定义 「裴蜀定理」,又称贝祖定理(Bzouts lemma)。是一个关于最大公约数的定理。其内容定义为:对于不全为零的任意整数 a 和 b,记二者的最大公约数为 g 即 gcd(a,b) g,则对于任意整数 x 和 y 都一定…...
基础篇—CSS Position(定位)解析
CSS Position(定位) position 属性指定了元素的定位类型。 position 属性的五个值: relativefixedabsolutesticky元素可以使用的顶部,底部,左侧和右侧属性定位。然而,这些属性无法工作,除非是先设定position属性。他们也有不同的工作方式,这取决于定位方法。 1、static…...
正则表达式与grep
基本正则表达式BRE集合 匹配字符匹配次数位置锚定 符号作用^尖角号,用于模式的最正常,如“^haha”,匹配以haha单词开头的行$美元符,用于模式的最右侧,如“haha$”,表示haha单词结尾的行^$组合符ÿ…...
开发必备的IDEA 插件!效率提升 50 倍!
日常开发中,面向百度编程的程序员,很多时候,你跟大佬级别的差距,可能不仅仅是知识面的差距,还有就是开发效率的差距。以下是我常用的几个IDEA插件,废话不多说,直接肝干货! 1. Codot…...
aws eks 集群访问ecr仓库拉取镜像的认证逻辑
本文主要讨论三个问题 ecr帮助程序在docker上如何配置eks集群访问ecr仓库的逻辑kubelet授权ecr的源码分析 ecr帮助程序 在docker环境下,可以通过在$HOME/.docker/config.json中指定凭证管理程序 docker login aws同样提供了证书助手,避免手动执行ecr认…...
Linux Socket Buffer介绍
一. 前言 Linux内核网络子系统的实现之所以灵活高效,主要是在于管理网络数据包的缓冲器-socket buffer设计得高效合理。在Linux网络子系统中,socket buffer是一个关键的数据结构,它代表一个数据包在内核中处理的整个生命周期。 二. Socket Bu…...
ACL与NAT
ACL---访问控制列表,是一种策略控制工具 功能:1.定义感兴趣流量(数据层面 ) 2.定义感兴趣路由(控制层面) ACL 条目表项组成: 编号规则:步数或者跳数默认值为5,…...
使用gdb来debug程序并查找Segmentation fault原因
GDB 调试前言GDB基础用法1.启动及退出调试2.设置参数3.执行程序4.流程控制5.设置断点6.输出信息7.查看栈帧8.info命令9.显示源码GDB调试coredump文件关注公众号【程序员DeRozan】,回复【1207】,免费获取计算机经典资料及现金红包 前言 在开发程序时&…...
公众号添加wordpress/给公司做网站要多少钱
在事业单位考试中,直言命题的上下反对关系是一个高频考点。为此,这里给大家提供了上下反对巧解模型。一、上反对关系-----“所有是”与“所有非”在直言命题中上反对关系常见呈现形式是:“所有是”与“所有非。1、特性:上反对关系…...
公司网站主机流量30g每月够用吗/小企业广告投放平台
2019独角兽企业重金招聘Python工程师标准>>> 在某些状况下,类内成员变量需要动态开辟堆内存,如果实行位拷贝,也就是把对象里的值完全复制给另一个对象,如AB。这时,如果B中有一个成员变量指针已经申请了内存…...
网站页面建设规划文案/2021谷歌搜索入口
如果是评估版本,则需要先把评估版本升级为正式版本,才能正确的使用。 1.管理员模式运行cmd,输入命令:DISM /online /Get-CurrentEdition,得到结果: 部署映像服务和管理工具 版本: 10.0.14393.0 映像版本: 10.0.14393.0 当前版本为…...
做淘宝客网站域名是别人的/杭州网站排名提升
第一:计算方法理论、算法是如何理解的,如下:VIN码各位数字的“对应值”:01234567890123456789ABCDEFGHJKLMNPRSTUVWXYZ12345678123457923456789VIN码从第1位到第17位的“加权值”:12345678910111213141516178765432109…...
芜湖哪里有做网站的/网页推广方案
2019独角兽企业重金招聘Python工程师标准>>> 时间轴组合-Timeline Portfolio 转载于:https://my.oschina.net/GaoLNMP/blog/207530...
素材中国免费素材网官网/百度seo和谷歌seo有什么区别
文章目录1. Spring Boot1.1 什么是Spring Boot?1.2 SpringBoot 官方的一些解释2. 微服务架构2.1 单体应用架构2.2 微服务架构2.3 分布式要解决的问题3. 搭建第一个SpringBoot程序3.1 在官方下载一个SpringBoot程序3.2 在IDEA中,创建SpringBoot程序(推荐)…...