VINS-Mono/Fusion与OpenCV去畸变对比
VINS中没有直接使用opencv的去畸变函数,而是自己编写了迭代函数完成去畸变操作,主要是为了加快去畸变计算速度
本文对二者的结果精度和耗时进行了对比
VINS-Mono/Fusion与OpenCV去畸变对比
- 1 去畸变原理
- 2 代码实现
- 2.1 OpenCV去畸变
- 2.2 VINS去畸变
- 3 二者对比
1 去畸变原理
opencv去畸变操作由cv::undistortPoints实现
VINS去畸变由PinholeCamera::liftProjective实现(以针孔相机为例)
二者均采用了迭代求解,通过多次迭代逼近真值。其中cv::undistortPoints方法中默认迭代5次,并计算每次重投影误差是否小于阈值,VINS去畸变方法只设置了迭代8次。
二者均输入像素坐标,输出归一化坐标。
2 代码实现
2.1 OpenCV去畸变
opencv去畸变操作由cv::undistortPoints实现,代码在opencv-3.4.13/modules/imgproc/src
undistortPoints首先处理了输入参数,主要实现部分调用cvUndistortPointsInternal
void undistortPoints( InputArray _src, OutputArray _dst,InputArray _cameraMatrix, InputArray _distCoeffs,InputArray _Rmat, InputArray _Pmat, TermCriteria criteria)
void undistortPoints( InputArray _src, OutputArray _dst,InputArray _cameraMatrix,InputArray _distCoeffs,InputArray _Rmat,InputArray _Pmat,TermCriteria criteria)
{Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat();int npoints = src.checkVector(2), depth = src.depth();if (npoints < 0)src = src.t();npoints = src.checkVector(2);CV_Assert(npoints >= 0 && src.isContinuous() && (depth == CV_32F || depth == CV_64F));if (src.cols == 2)src = src.reshape(2);_dst.create(npoints, 1, CV_MAKETYPE(depth, 2), -1, true);Mat dst = _dst.getMat();CvMat _csrc = cvMat(src), _cdst = cvMat(dst), _ccameraMatrix = cvMat(cameraMatrix);CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0;if( !R.empty() )pR = &(matR = cvMat(R));if( !P.empty() )pP = &(matP = cvMat(P));if( !distCoeffs.empty() )pD = &(_cdistCoeffs = cvMat(distCoeffs));cvUndistortPointsInternal(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP, criteria);
}
static void cvUndistortPointsInternal( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP, cv::TermCriteria criteria)
static void cvUndistortPointsInternal( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,const CvMat* _distCoeffs,const CvMat* matR, const CvMat* matP, cv::TermCriteria criteria)
{CV_Assert(criteria.isValid());double A[3][3], RR[3][3], k[14]={0,0,0,0,0,0,0,0,0,0,0,0,0,0};CvMat matA=cvMat(3, 3, CV_64F, A), _Dk;CvMat _RR=cvMat(3, 3, CV_64F, RR);cv::Matx33d invMatTilt = cv::Matx33d::eye();cv::Matx33d matTilt = cv::Matx33d::eye();CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&(_src->rows == 1 || _src->cols == 1) &&(_dst->rows == 1 || _dst->cols == 1) &&_src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&(CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&(CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));CV_Assert( CV_IS_MAT(_cameraMatrix) &&_cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );cvConvert( _cameraMatrix, &matA );if( _distCoeffs ){CV_Assert( CV_IS_MAT(_distCoeffs) &&(_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&(_distCoeffs->rows*_distCoeffs->cols == 4 ||_distCoeffs->rows*_distCoeffs->cols == 5 ||_distCoeffs->rows*_distCoeffs->cols == 8 ||_distCoeffs->rows*_distCoeffs->cols == 12 ||_distCoeffs->rows*_distCoeffs->cols == 14));_Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);cvConvert( _distCoeffs, &_Dk );if (k[12] != 0 || k[13] != 0){cv::detail::computeTiltProjectionMatrix<double>(k[12], k[13], NULL, NULL, NULL, &invMatTilt);cv::detail::computeTiltProjectionMatrix<double>(k[12], k[13], &matTilt, NULL, NULL);}}if( matR ){CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );cvConvert( matR, &_RR );}elsecvSetIdentity(&_RR);if( matP ){double PP[3][3];CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );cvMatMul( &_PP, &_RR, &_RR );}const CvPoint2D32f* srcf = (const CvPoint2D32f*)_src->data.ptr;const CvPoint2D64f* srcd = (const CvPoint2D64f*)_src->data.ptr;CvPoint2D32f* dstf = (CvPoint2D32f*)_dst->data.ptr;CvPoint2D64f* dstd = (CvPoint2D64f*)_dst->data.ptr;int stype = CV_MAT_TYPE(_src->type);int dtype = CV_MAT_TYPE(_dst->type);int sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);int dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);double fx = A[0][0];double fy = A[1][1];double ifx = 1./fx;double ify = 1./fy;double cx = A[0][2];double cy = A[1][2];int n = _src->rows + _src->cols - 1;for( int i = 0; i < n; i++ ){double x, y, x0 = 0, y0 = 0, u, v;if( stype == CV_32FC2 ){x = srcf[i*sstep].x;y = srcf[i*sstep].y;}else{x = srcd[i*sstep].x;y = srcd[i*sstep].y;}u = x; v = y;x = (x - cx)*ifx;y = (y - cy)*ify;if( _distCoeffs ) {// compensate tilt distortioncv::Vec3d vecUntilt = invMatTilt * cv::Vec3d(x, y, 1);double invProj = vecUntilt(2) ? 1./vecUntilt(2) : 1;x0 = x = invProj * vecUntilt(0);y0 = y = invProj * vecUntilt(1);double error = std::numeric_limits<double>::max();// compensate distortion iterativelyfor( int j = 0; ; j++ ){//在这里判断if ((criteria.type & cv::TermCriteria::COUNT) && j >= criteria.maxCount)break;if ((criteria.type & cv::TermCriteria::EPS) && error < criteria.epsilon)break;double r2 = x*x + y*y;double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);if (icdist < 0) // test: undistortPoints.regression_14583{x = (u - cx)*ifx;y = (v - cy)*ify;break;}double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x)+ k[8]*r2+k[9]*r2*r2;double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y+ k[10]*r2+k[11]*r2*r2;x = (x0 - deltaX)*icdist;y = (y0 - deltaY)*icdist;if(criteria.type & cv::TermCriteria::EPS){double r4, r6, a1, a2, a3, cdist, icdist2;double xd, yd, xd0, yd0;cv::Vec3d vecTilt;r2 = x*x + y*y;r4 = r2*r2;r6 = r4*r2;a1 = 2*x*y;a2 = r2 + 2*x*x;a3 = r2 + 2*y*y;cdist = 1 + k[0]*r2 + k[1]*r4 + k[4]*r6;icdist2 = 1./(1 + k[5]*r2 + k[6]*r4 + k[7]*r6);xd0 = x*cdist*icdist2 + k[2]*a1 + k[3]*a2 + k[8]*r2+k[9]*r4;yd0 = y*cdist*icdist2 + k[2]*a3 + k[3]*a1 + k[10]*r2+k[11]*r4;vecTilt = matTilt*cv::Vec3d(xd0, yd0, 1);invProj = vecTilt(2) ? 1./vecTilt(2) : 1;xd = invProj * vecTilt(0);yd = invProj * vecTilt(1);double x_proj = xd*fx + cx;double y_proj = yd*fy + cy;error = sqrt( pow(x_proj - u, 2) + pow(y_proj - v, 2) );}}}double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);x = xx*ww;y = yy*ww;if( dtype == CV_32FC2 ){dstf[i*dstep].x = (float)x;dstf[i*dstep].y = (float)y;}else{dstd[i*dstep].x = x;dstd[i*dstep].y = y;}}
}
2.2 VINS去畸变
void
PinholeCamera::liftProjective(const Eigen::Vector2d& p, Eigen::Vector3d& P) const
{double mx_d, my_d,mx2_d, mxy_d, my2_d, mx_u, my_u;double rho2_d, rho4_d, radDist_d, Dx_d, Dy_d, inv_denom_d;//double lambda;// Lift points to normalised planemx_d = m_inv_K11 * p(0) + m_inv_K13;my_d = m_inv_K22 * p(1) + m_inv_K23;if (m_noDistortion){mx_u = mx_d;my_u = my_d;}else{if (0){double k1 = mParameters.k1();double k2 = mParameters.k2();double p1 = mParameters.p1();double p2 = mParameters.p2();// Apply inverse distortion model// proposed by Heikkilamx2_d = mx_d*mx_d;my2_d = my_d*my_d;mxy_d = mx_d*my_d;rho2_d = mx2_d+my2_d;rho4_d = rho2_d*rho2_d;radDist_d = k1*rho2_d+k2*rho4_d;Dx_d = mx_d*radDist_d + p2*(rho2_d+2*mx2_d) + 2*p1*mxy_d;Dy_d = my_d*radDist_d + p1*(rho2_d+2*my2_d) + 2*p2*mxy_d;inv_denom_d = 1/(1+4*k1*rho2_d+6*k2*rho4_d+8*p1*my_d+8*p2*mx_d);mx_u = mx_d - inv_denom_d*Dx_d;my_u = my_d - inv_denom_d*Dy_d;}else{// Recursive distortion modelint n = 8;Eigen::Vector2d d_u;distortion(Eigen::Vector2d(mx_d, my_d), d_u);// Approximate valuemx_u = mx_d - d_u(0);my_u = my_d - d_u(1);for (int i = 1; i < n; ++i){distortion(Eigen::Vector2d(mx_u, my_u), d_u);mx_u = mx_d - d_u(0);my_u = my_d - d_u(1);}}}// Obtain a projective rayP << mx_u, my_u, 1.0;
}
3 二者对比
在相机坐标系下随机生成了 20 个观测点,并将其归算到归一化坐标系下作为真值。
#include <iostream>
#include <vector>
#include <random>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <opencv2/opencv.hpp>
#include <opencv2/core/eigen.hpp>
#include <chrono>#include "Camera.h"using namespace std;int main()
{// 随机数生成 20 个 三维特征点int featureNums=20;default_random_engine generator;vector<cv::Point2f> pts_truth; //归一化真值vector<cv::Point2f> uv_pts; //像素坐标vector<cv::Point2f> cv_un_pts, vins_un_pts; //归一化坐标for(int i = 0; i < featureNums; ++i){uniform_real_distribution<double> xy_rand(-4, 4.0);uniform_real_distribution<double> z_rand(8., 10.);double tx = xy_rand(generator);double ty = xy_rand(generator);double tz = z_rand(generator);Eigen::Vector2d p(tx/tz, ty/tz);Eigen::Vector2d p_distorted;distortion(p, p_distorted); //归一化坐标畸变p_distorted+=p;pts_truth.push_back(cv::Point2f(p(0), p(1)));cv::Point2f uv(fx*p_distorted(0)+cx, fy*p_distorted(1)+cy); //投影到像素坐标uv_pts.push_back(uv);}//OpenCV去畸变,输入像素坐标,输出归一化坐标chrono::steady_clock::time_point cv_t1 = chrono::steady_clock::now();cv::undistortPoints(uv_pts, cv_un_pts, K, distCoeffs);chrono::steady_clock::time_point cv_t2 = chrono::steady_clock::now();double cv_time = chrono::duration_cast<chrono::duration<double,milli>>(cv_t2-cv_t1).count();cout<<"OpenCV"<<endl;cout<<"used time: "<<cv_time/cv_un_pts.size()<<"ms"<<endl;cout<<"pixel error: "<<GetResidual(cv_un_pts, pts_truth)<<endl;//VINS去畸变chrono::steady_clock::time_point vins_t1 = chrono::steady_clock::now();liftProjective(uv_pts, vins_un_pts);chrono::steady_clock::time_point vins_t2 = chrono::steady_clock::now();double vins_time = chrono::duration_cast<chrono::duration<double, milli>>(vins_t2-vins_t1).count();cout<<"VINS"<<endl;cout<<"used time: "<<vins_time/vins_un_pts.size()<<"ms"<<endl;cout<<"pixel error: "<<GetResidual(vins_un_pts, pts_truth)<<endl;return 0;
}
输出结果
给出了每个观测点的平均去畸变耗时和像素坐标系下的重投影误差。
VINS所采用的去畸变算法耗时更少,重投影误差平均值更小,opencv方法与其相差一个数量级。

相关文章:
VINS-Mono/Fusion与OpenCV去畸变对比
VINS中没有直接使用opencv的去畸变函数,而是自己编写了迭代函数完成去畸变操作,主要是为了加快去畸变计算速度 本文对二者的结果精度和耗时进行了对比 VINS-Mono/Fusion与OpenCV去畸变对比1 去畸变原理2 代码实现2.1 OpenCV去畸变2.2 VINS去畸变3 二者对…...
jmx prometheus引起的一次cpu飙高
用户接入了jmx agent进行prometheus监控后,在某个时间点出现cpu飙高 排查思路: 1、top,找到java进程ID 2、top -Hp 进程ID,找到java进程下占用高CPU的线程ID 3、jstack 进程ID,找到那个高CPU的线程ID的堆栈。 4、分析堆…...
Android 虚拟 A/B 详解(六) SnapshotManager 之状态数据
本文为洛奇看世界(guyongqiangx)原创,转载请注明出处。 原文链接:https://blog.csdn.net/guyongqiangx/article/details/129094203 Android 虚拟 A/B 分区《AAndroid 虚拟 A/B 分区》系列,更新中,文章列表: Android 虚拟分区详解(一) 参考资料推荐Android 虚拟分区详解(二…...
Python快速入门系列之一:Python对象
Python对象1. 列表(list)2. 元组(tuple)3. 字典(dict)4. 集合(set)5. 字符串(string)6. BIF (Built-in Function)7. 列表、集合以及字…...
【博客626】不同类型的ARP报文作用以及ARP老化机制
不同类型的ARP报文作用以及ARP老化机制 1、ARP协议及报文 2、不同类型的ARP报文作用 3、ARP工作原理 4、ARP老化机制 5、Linux ARP老化机制 ARP状态机: 在上图中,我们看到只有arp缓存项的reachable状态对于外发包是可用的,对于stale状态的…...
nacos discovery和config
微服务和nacos版本都在2.x及之后。1、discovery用于服务注册,将想要注册的服务注册到nacos中,被naocs发现。pom引入的依赖是:yml配置文件中:2、config用于获取nacos配置管理->配置列表下配置文件中的内容pom引入的依赖是&#…...
【算法数据结构体系篇class06】:堆、大根堆、小根堆、优先队列
一、堆结构1)堆结构就是用数组实现的完全二叉树结构2)完全二叉树中如果每棵子树的最大值都在顶部就是大根堆3)完全二叉树中如果每棵子树的最小值都在顶部就是小根堆4)堆结构的heapInsert与heapify操作5)堆结构的增大ad…...
试题 算法提高 最小字符串
资源限制内存限制:256.0MB C/C时间限制:2.0s Java时间限制:6.0s Python时间限制:10.0s问题描述给定一些字符串(只包含小写字母),要求将他们串起来构成一个字典序最小的字符串。输入格式第一行T,表示有T组数据。接下来T…...
已解决ImportError: cannot import name ‘featureextractor‘ from ‘radiomics‘
已解决from radiomics import featureextractor导包,抛出ImportError: cannot import name ‘featureextractor‘ from ‘radiomics‘异常的正确解决方法,亲测有效!!! 文章目录报错问题报错翻译报错原因解决方法联系博…...
乡村振兴研究:全网最全指标农村经济面板数据(2000-2021年)
数据来源:国家统计局 时间跨度:2000-2021年 区域范围:全国31省 指标说明: 部分样例数据: 行政区划代码地区年份经度纬度乡镇数(个)乡数(个)镇数(个)村民委员会数(个)乡村户数(万户)乡村人口(万人)乡村从业人员(万人…...
C语言中用rand()函数产生一随机数
在C语言中如何产生一个随机数呢?用rand()函数。 rand()函数在头文件:#include <stdio.h>中,函数原型:int rand(void);。rand()会返回一个范围在0到RAND_MAX(32767)之间的随机数(整数&…...
关于系统架构
1.系统架构分类: C/S架构 B/S架构 2.C/S架构 Client / Server(客户端 / 服务器) 特点:需要安装特定的客户端软件。 C/S架构的系统优点和缺点: 优点: 1)速度快(软件中数据大部分都是集成到客户端当中,很少量的数据从服…...
LeetCode 1237. 找出给定方程的正整数解
原题链接 难度:middle\color{orange}{middle}middle 2023/2/18 每日一题 题目描述 给你一个函数 f(x,y)f(x, y)f(x,y) 和一个目标结果 zzz,函数公式未知,请你计算方程 f(x,y)zf(x,y) zf(x,y)z 所有可能的正整数 数对 xxx 和 yyy。满足条件…...
【ArcGIS Pro二次开发】(5):UI管理_自定义控件的位置
新增的自定义控件一般放在默认的【加载项】选项卡下,但是根据需求,我们可能需要将控件放在新的自定义选项卡下,在自定义选项卡添加系统自带的控件,将自定义的按钮等控件放在右键菜单栏里以方便使用,等等。 下面就以一…...
学习OpenGL图形2D/3D编程
环境:WindowsVisual Studio 2019最流行的几个库:GLUT,SDL,SFML和GLFWGLFWGLAD库查看显卡OPENGL支持情况VS2019glfwgladopenGL3.3顶点着色器片段着色器VAO-VBO-(EBO)->渲染VAO-VBO-EBO->texture纹理矩阵matrix对图形transfor…...
2023美赛思路 | A题时间序列预测任务的模型选择总结
2023美赛思路 | A题时间序列预测任务的模型选择总结 目录 2023美赛思路 | A题时间序列预测任务的模型选择总结基本介绍数据描述任务介绍时序模型基本介绍 这道题分析植被就行,主要涉及不同植被间的相互作用,有竞争有相互促进,我查了下“植物科学数据中心”和“中国迁地保护植…...
PHP教材管理系统设计(源代码+毕业论文)
【P003】PHP教材管理系统设计(源代码论文) 设计方案 本系统采用B/S结构,所有的程序及数据都放在服务器上,终端在取得相应的权限后使用Web页面浏览,录入,修改等功能。在语言方面使用PHP语言,在…...
nps内网穿透工具
一、准备一台有公网ip的服务器 https://github.com/ehang-io/nps/releases 在这个地址下载服务端的安装包,centos的下载这个 上传到服务器上。 二、然后解压,安装,启动 [rootadministrator ~]# tar xzvf linux_amd64_server.tar.gz [roo…...
webpack打包时的热模块替代配置以及source-map
1.HMR 在devServer当中添加hot:true 热模块化功能 含义:当其中有一个文件发生变化的时候,那么就会被重新打包一次,极大的提高了构建速度 A.样式文件:可以使用HMR功能,因为在style-loader当中实现了 B.js文件:默认不能使用HMR功能…...
Seata架构篇 - TCC模式
TCC 模式 概述 TCC 是分布式事务中的两阶段提交协议,它的全称为 Try-Confirm-Cancel,即资源预留(Try)、确认操作(Confirm)、取消操作(Cancel)。Try:对业务资源的检查并…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
