LeetCode 1237. 找出给定方程的正整数解
原题链接
难度:middle\color{orange}{middle}middle
2023/2/18 每日一题
题目描述
给你一个函数 f(x,y)f(x, y)f(x,y) 和一个目标结果 zzz,函数公式未知,请你计算方程 f(x,y)==zf(x,y) == zf(x,y)==z 所有可能的正整数 数对 xxx 和 yyy。满足条件的结果数对可以按任意顺序返回。
尽管函数的具体式子未知,但它是单调递增函数,也就是说:
- f(x,y)<f(x+1,y)f(x, y) < f(x + 1, y)f(x,y)<f(x+1,y)
- f(x,y)<f(x,y+1)f(x, y) < f(x, y + 1)f(x,y)<f(x,y+1)
函数接口定义如下:
interface CustomFunction {
public:// Returns some positive integer f(x, y) for two positive integers x and y based on a formula.int f(int x, int y);
};
你的解决方案将按如下规则进行评判:
- 判题程序有一个由 CustomFunctionCustomFunctionCustomFunction 的 999 种实现组成的列表,以及一种为特定的 zzz 生成所有有效数对的答案的方法。
- 判题程序接受两个输入:functionidfunction_idfunctionid(决定使用哪种实现测试你的代码)以及目标结果 zzz 。
- 判题程序将会调用你实现的 findSolutionfindSolutionfindSolution 并将你的结果与答案进行比较。
- 如果你的结果与答案相符,那么解决方案将被视作正确答案,即 AcceptedAcceptedAccepted 。
示例 1:
输入:function_id = 1, z = 5
输出:[[1,4],[2,3],[3,2],[4,1]]
解释:function_id = 1 暗含的函数式子为 f(x, y) = x + y
以下 x 和 y 满足 f(x, y) 等于 5:
x=1, y=4 -> f(1, 4) = 1 + 4 = 5
x=2, y=3 -> f(2, 3) = 2 + 3 = 5
x=3, y=2 -> f(3, 2) = 3 + 2 = 5
x=4, y=1 -> f(4, 1) = 4 + 1 = 5
示例 2:
输入:function_id = 2, z = 5
输出:[[1,5],[5,1]]
解释:function_id = 2 暗含的函数式子为 f(x, y) = x * y
以下 x 和 y 满足 f(x, y) 等于 5:
x=1, y=5 -> f(1, 5) = 1 * 5 = 5
x=5, y=1 -> f(5, 1) = 5 * 1 = 5
提示:
- 1<=functionid<=91 <= function_id <= 91<=functionid<=9
- 1<=z<=1001 <= z <= 1001<=z<=100
- 题目保证 f(x,y)==zf(x, y) == zf(x,y)==z 的解处于 1<=x,y<=10001 <= x, y <= 10001<=x,y<=1000 的范围内。
- 在 1<=x,y<=10001 <= x, y <= 10001<=x,y<=1000 的前提下,题目保证 f(x,y)f(x, y)f(x,y) 是一个 32 位有符号整数。
算法
(暴力枚举) O(n2)O(n^2)O(n2)
-
枚举
x
和y
,调用接口判断f(x, y)
是否等于z
。 -
如果等于
z
,则加入答案中,如果大于z
,则终止掉内层循环。
复杂度分析
-
时间复杂度:最坏情况下,需要判断每一个数对,故时间复杂度为 O(n2)O(n^2)O(n2)。
-
空间复杂度 : 需要存储答案,故空间复杂度也为 O(n2)O(n^2)O(n2)。
C++ 代码
/** // This is the custom function interface.* // You should not implement it, or speculate about its implementation* class CustomFunction {* public:* // Returns f(x, y) for any given positive integers x and y.* // Note that f(x, y) is increasing with respect to both x and y.* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)* int f(int x, int y);* };*/class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> res;for (int x = 1; x <= 1000; x ++) for (int y = 1; y <= 1000; y ++) if (customfunction.f(x, y) == z) {res.push_back({x, y});}return res;}
};
- 双指针
/** // This is the custom function interface.* // You should not implement it, or speculate about its implementation* class CustomFunction {* public:* // Returns f(x, y) for any given positive integers x and y.* // Note that f(x, y) is increasing with respect to both x and y.* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)* int f(int x, int y);* };*/class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> res;int x = 1, y = 1000;while (x <= 1000 && y >= 1) {int t = customfunction.f(x, y);if (t > z) y --;else if (t < z) x ++;else {res.push_back({x, y});x ++, y --;}}return res;}
};
相关文章:
LeetCode 1237. 找出给定方程的正整数解
原题链接 难度:middle\color{orange}{middle}middle 2023/2/18 每日一题 题目描述 给你一个函数 f(x,y)f(x, y)f(x,y) 和一个目标结果 zzz,函数公式未知,请你计算方程 f(x,y)zf(x,y) zf(x,y)z 所有可能的正整数 数对 xxx 和 yyy。满足条件…...
【ArcGIS Pro二次开发】(5):UI管理_自定义控件的位置
新增的自定义控件一般放在默认的【加载项】选项卡下,但是根据需求,我们可能需要将控件放在新的自定义选项卡下,在自定义选项卡添加系统自带的控件,将自定义的按钮等控件放在右键菜单栏里以方便使用,等等。 下面就以一…...
学习OpenGL图形2D/3D编程
环境:WindowsVisual Studio 2019最流行的几个库:GLUT,SDL,SFML和GLFWGLFWGLAD库查看显卡OPENGL支持情况VS2019glfwgladopenGL3.3顶点着色器片段着色器VAO-VBO-(EBO)->渲染VAO-VBO-EBO->texture纹理矩阵matrix对图形transfor…...
2023美赛思路 | A题时间序列预测任务的模型选择总结
2023美赛思路 | A题时间序列预测任务的模型选择总结 目录 2023美赛思路 | A题时间序列预测任务的模型选择总结基本介绍数据描述任务介绍时序模型基本介绍 这道题分析植被就行,主要涉及不同植被间的相互作用,有竞争有相互促进,我查了下“植物科学数据中心”和“中国迁地保护植…...
PHP教材管理系统设计(源代码+毕业论文)
【P003】PHP教材管理系统设计(源代码论文) 设计方案 本系统采用B/S结构,所有的程序及数据都放在服务器上,终端在取得相应的权限后使用Web页面浏览,录入,修改等功能。在语言方面使用PHP语言,在…...
nps内网穿透工具
一、准备一台有公网ip的服务器 https://github.com/ehang-io/nps/releases 在这个地址下载服务端的安装包,centos的下载这个 上传到服务器上。 二、然后解压,安装,启动 [rootadministrator ~]# tar xzvf linux_amd64_server.tar.gz [roo…...
webpack打包时的热模块替代配置以及source-map
1.HMR 在devServer当中添加hot:true 热模块化功能 含义:当其中有一个文件发生变化的时候,那么就会被重新打包一次,极大的提高了构建速度 A.样式文件:可以使用HMR功能,因为在style-loader当中实现了 B.js文件:默认不能使用HMR功能…...
Seata架构篇 - TCC模式
TCC 模式 概述 TCC 是分布式事务中的两阶段提交协议,它的全称为 Try-Confirm-Cancel,即资源预留(Try)、确认操作(Confirm)、取消操作(Cancel)。Try:对业务资源的检查并…...
前端最全面试题整理
前端基础 一、 HTTP/HTML/浏览器 1、说一下 http 和 https https 的 SSL 加密是在传输层实现的。 (1) http 和 https 的基本概念 http: 超文本传输协议,是互联网上应用最为广泛的一种网络协议,是一个客户端和服务器端请求和应答的标准(T…...
大数据之-Nifi-监控nifi数据流信息_监控数据来源_bub轻松复现---大数据之Nifi工作笔记0011
通过数据流功能可以轻松复现,数据的流向在某个时间点数据是怎么流动的,出现了什么问题,太强大了.. 真的是,可以看到通过右键,处理器,打开view data province就可以看到, 上面是处理器处理数据的详细信息 点击左侧的详情图标可以查看详情信息,details是这个事件处理的内容详情,…...
CUDA编程接口
编程接口 文章目录编程接口3.1利用NVCC编译3.1.1编译流程3.1.1.1 离线编译3.1.1.2 即时编译3.1.2 Binary 兼容性注意:仅桌面支持二进制兼容性。 Tegra 不支持它。 此外,不支持桌面和 Tegra 之间的二进制兼容性。3.1.3 PTX 兼容性3.1.4 应用程序兼容性3.1…...
惠普打印机使用
https://support.hp.com/cn-zh/product/hp-officejet-4500-all-in-one-printer-series-g510/3919445/document/c02076511HP 打印机 - 无法打印校准页本文适用于 HP 喷墨打印机。安装新墨盒后,打印机无法按预期打印校准页。步骤 1:确保打印机可以开始打印…...
Ubuntu升级cmake
目录 1、下载cmake安装包 2、开始安装 3、查看cmake版本 参考链接: https://blog.csdn.net/qq_27350133/article/details/121994229 1、下载cmake安装包 cmake安装包下载:download | cmake 我们根据自身需求下载所需版本的cmake安装包,这…...
CCNP350-401学习笔记(101-150题)
101、Refer to the exhibit SwitchC connects HR and Sales to the Core switch However, business needs require that no traffic from the Finance VLAN traverse this switch. Which command meets this requirement? A. SwitchC(config)#vtp pruning B. SwitchC(config)#…...
分享112个HTML娱乐休闲模板,总有一款适合您
分享112个HTML娱乐休闲模板,总有一款适合您 112个HTML娱乐休闲模板下载链接:https://pan.baidu.com/s/15uBy1SVSckPPMM55fiudeQ?pwdkqfz 提取码:kqfz Python采集代码下载链接:采集代码.zip - 蓝奏云 Bootstrap视频网站模板 …...
k8s快速入门
文章目录一、Kubernetes(K8S)简介1、概念1.1 Kubernetes (K8S) 是什么1.2 核心特性1.3 部署方案2、Kubernetes 集群架构2.1 架构2.2 重要概念 Pod2.3 Kubernetes 组件二、Kubernetes集群安装1、安装方式介绍2、minikubute安装3、裸机搭建(Bar…...
NG ZORRO知识点总结
NG ZORRO的常用属性,包括但不限于,结合代码 <button nz-button [nzType]"primary" [nzSize]"large" [nzLoading]"loading" [nzDisabled]"disabled" (click)"onClick()">点击我</button>nz-button是一个按钮组件…...
go中的值方法和指针方法
go中的值方法和指针方法1前言2 不同类型的对象调用不同类型的方法2.1 值对象可以调用值方法和指针方法3 指针对象可以调用值方法和指针方法4 !注意:结构体对象实现接口方法1前言 golang中在给结构体对象添加方法时,接收者参数类型可以有两种…...
OKR常见挑战以及应对方法探讨
背景 OKR是大家经常听到的一个词,也有不少团队说自己实行过,但每个实行过的团队都遇到过挑战。很多团队都感觉OKR有些空,很难落地,普通团队成员更是时常感觉无所适从,感觉就像看电影。2022年我们在更大的范围落地了OK…...
SpringAMQP消息队列(SpringBoot集成RabbitMQ)
一、初始配置1、导入maven坐标<!--rabbitmq--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId></dependency>2、yml配置spring:rabbitmq:host: 你的rabbitmq的ipport: …...
DIDL5_数值稳定性和模型初始化
数值稳定性和模型初始化数值稳定性梯度不稳定的影响推导什么是梯度消失?什么是梯度爆炸?如何解决数值不稳定问题?——参数初始化参数初始化的几种方法默认初始化Xavier初始化小结当神经网络变得很深的时候,数值特别容易不稳定。我…...
火狐浏览器推拽开新的窗口
今天我测试的时候,发现我拖拽一下火狐会打开了新的窗口,谷歌就不会,所以我们要阻止一下默认行为const disableFirefoxDefaultDrop () > {const isFirefox navigator.userAgent.toLowerCase().indexOf(firefox) ! -1if (isFirefox) {docu…...
vrrp+mstp+osfp经典部署案例
LSW1和LSW2和LSW3和LSW4上面启用vrrpmstp组网: vlan 10 全走LSW1出再走AR2到外网,vlan 20 全走LSW2出再走AR3到外网 配置注意:mstp实例的根桥在哪,vrrp的主设备就是谁 ar2和ar3上开nat ar2和ar3可以考虑换成两台防火墙来做&…...
AI_News周刊:第二期
2023.02.13—2023.02.17 1.ChatGPT 登上TIME时代周刊封面 这一转变标志着自社交媒体以来最重要的技术突破。近几个月来,好奇、震惊的公众如饥似渴地采用了生成式人工智能工具,这要归功于诸如 ChatGPT 之类的程序,它对几乎任何查询做出连贯&a…...
【C++的OpenCV】第一课-opencv的间接和安装(Linux环境下)
第一课-目录一、基本介绍1.1 官网1.2 git源码1.3 介绍二、OpenCV的相关部署工作2.1 Linux平台下部署OpenCV一、基本介绍 1.1 官网 opencv官网 注意:官网为英文版本,可以使用浏览器自带的翻译插件进行翻译,真心不推荐大家去看别人翻译的&am…...
为什么建议使用你 LocalDateTime ,而不是 Date
为什么建议使用你 LocalDateTime ,而不是 Date? 在项目开发过程中经常遇到时间处理,但是你真的用对了吗,理解阿里巴巴开发手册中禁用static修饰SimpleDateFormat吗 通过阅读本篇文章你将了解到: 为什么需要LocalDate…...
【大数据】HADOOP-YARN容量调度器Spark作业实战
目录需求配置多队列的容量调度器验证队列资源需求 default 队列占总内存的40%,最大资源容量占总资源的60% ops 队列占总内存的60%,最大资源容量占总资源的80% 配置多队列的容量调度器 在yarn-site.xml里面配置使用容量调度器 <!-- 使用容量调度器…...
平面及其方程
一、曲面和交线的定义 空间解析几何中,任何曲面或曲线都看作点的几何轨迹。在这样的意义下,如果曲面SSS与三元方程: F(x,y,z)0(1)F(x,y,z)0\tag{1} F(x,y,z)0(1) 有下述关系: 曲面 SSS 上任一点的坐标都满足方程(1)(1)(1)不在曲…...
7 配置的封装
概述 IPC设备通常有三种配置信息:一是默认配置,存储了设备所有配置项的默认值,默认配置是只读的,不能修改;二是用户配置,存储了用户修改过的所有配置项;三是私有配置,存储了程序内部使用的一些配置项,比如:固件升级的URL、固件升级标志位等。恢复出厂设置的操作,实际…...
03_Docker 入门
03_Docker 入门 文章目录03_Docker 入门3.1 确保 Docker 已经就绪3.2 运行我们的第一个容器3.3 使用第一个容器3.4 容器命名3.5 重新启动已经停止的容器3.6 附着到容器上3.7 创建守护式容器3.8 容器内部都在干些什么3.9 Docker 日志驱动3.10 查看容器内的进程3.11 Docker 统计信…...
网站怎么添加假备案号/网站优化公司怎么选
今天搭建了CANoe与金溢的obu can连接的环境问题。遇到了一个让人不解的问题。 can0起不来,于是怀疑波特率不匹配,使用调不了。 Linux 设置波特率 ifconfig can0 down /*关闭CAN0*/ ip link set can0 type can bitrate 250000 /*设…...
微网站后台录入/今日热点新闻事件2022
一、类加载器 ClassLoader 能根据需要将 class 文件加载到 JVM 中,它使用双亲委托模型,在加载类的时候会判断如果类未被自己加载过,就优先让父加载器加载。另外在使用 instanceof 关键字、equals()方法、isAssignableFrom()方法、isInstance(…...
上海市工商网站官网/免费拓客软件
使用范围: OA、MIS、ERP等信息管理类的项目,暂时不考虑网站。 遇到的问题: 完成一个项目,往往需要引用很多js文件,比如jQuery.js、easyUI等。还有自己写的一些列js文件,那么这些文件如何方便的加载…...
网站栏目做树形结构图/重庆seowhy整站优化
Docker的C/S模式: 用户通过Docker的CLI客户端向Docker守护进程发送指令,然后Docker守护进程将执行结果通过Docker的CLI客户端显示给用户。 Docker也提供了与守护进程通信的API,叫做RemoteAPI。RemoteAPI在复杂的情况下支持使用STDIN/STDOUT/S…...
学做旗袍衣服的网站/指定关键词seo报价
Time Limit: 1 second Memory Limit: 128 MB 【问题描述】 N个数排成一排,你可以任意选择连续的若干个数,算出它们的和。问该如何选择才能使得和的绝对值最小。如:N8时,8个数如下:1 2 3 4 5 6 7 8-20 90 -30 -20 80 -70 -60 125如…...
西安网站建设首选/优化系统的软件
原标题:「数控干货」基于UG CLS文件使用 C 语言制作智能后处理工具1 前言UG 后处理操作是 UGCAM 数控加工工作中一个重要环节,主要任务是把在 UG 加工环境下生成的加工刀位文件转换成机床可接受的数控代码文件。UG 本身提供了强大的 Post Builder 后处理…...