三维立体网站建设/外链发布平台
Python-OpenCV中的图像处理-图像平滑
- 图像平滑
- 平均滤波
- 高斯模糊
- 中值模糊
- 双边滤波
图像平滑
使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。
平均滤波
这是由一个归一化卷积框完成的。他只是用卷积框覆盖区域所有像素的平均值来代替中心元素。可以使用函数 cv2.blur() 和 cv2.boxFilter() 来完这个任务。可以同看查看文档了解更多卷积框的细节。我们需要设定卷积框的宽和高。
一个3x3的归一化卷积框:
K = 1 9 [ 1 1 1 1 1 1 1 1 1 ] K=\frac{1}{9}\left[\begin{matrix} 1&1&1 \\1&1&1\\1&1&1\end{matrix}\right] K=91 111111111
注意:如果不想使用归一化卷积框,你应该使用 cv2.boxFilter(),这时要传入参数 normalize=False。
dst=cv2.boxFilter(src,ddepth,ksize)
import numpy as np
import cv2
from matplotlib import pyplot as plt# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):result = image.copy()# 测量图片的长和宽w, h, = image.shape[:2]# 生成n个椒盐噪声for i in range(n):x = np.random.randint(1, w)y= np.random.randint(1, h)if np.random.randint(0, 2) == 0 :result[x, y] = 0else:result[x,y] = 255return result# 平均
# 这是由一个归一化卷积框完成的,
# cv2.blur()和cv2.boxFiter()来实现。
img = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)# 原图添加椒盐噪声
saltnoise_img = add_peppersalt_noise(img, 10000)blur = cv2.blur(saltnoise_img, (5,5))
boxfilter = cv2.boxFilter(saltnoise_img, -1, (3,3))
# boxfilter = cv2.boxFilter(saltnoise_img, -1, (3,3), normalize=0)plt.subplot(221), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(cv2.cvtColor(saltnoise_img, cv2.COLOR_BGR2RGB)), plt.title('add noise'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)), plt.title('blur'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(cv2.cvtColor(boxfilter, cv2.COLOR_BGR2RGB)), plt.title('boxfilter'), plt.xticks([]), plt.yticks([])
plt.show()
高斯模糊
现在把卷积核换成高斯核(简单来说,方框不变,将原来每个方框的值是相等的,现在里面的值是符合高斯分布的,方框中心的值最大,其余方框根据距离中心元素的距离递减,构成一个高斯小山包。原来的求平均数现在变成求加权平均数,全就是方框里的值)。实现的函数是 cv2.GaussianBlur()。我们需要指定高斯核的宽和高(必须是奇数)。以及高斯函数沿 X, Y 方向的标准差。如果我们只指定了 X 方向的的标准差, Y 方向也会取相同值。如果两个标准差都是 0,那么函数会根据核函数的大小自己计算。高斯滤波可以有效的从图像中去除高斯噪音。如果你愿意的话,你也可以使用函数 cv2.getGaussianKernel() 自己构建一个高斯核。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 高斯模糊
# 卷积核换成高斯核,即方框不变,将原来方框相等的值,换成符合高斯分部的值,方框中心值最大,其余值递减,构成一个高斯小山包
# 高斯核的宽和高必须是奇数# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):result = image.copy()# 测量图片的长和宽w, h, = image.shape[:2]# 生成n个椒盐噪声for i in range(n):x = np.random.randint(1, w)y= np.random.randint(1, h)if np.random.randint(0, 2) == 0 :result[x, y] = 0else:result[x,y] = 255return result# 获取高斯核
k1 = cv2.getGaussianKernel(3, 1)
k2 = cv2.getGaussianKernel(5,2)
print(k1)
print(k2)# 彩色图像高斯模糊
img = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
img = add_peppersalt_noise(img)
dst1 = cv2.GaussianBlur(img, (5,5), 0)# 灰度图像高斯模糊
gray = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_GRAYSCALE)
gray = add_peppersalt_noise(gray)
dst2 = cv2.GaussianBlur(gray, (5,5), 0)plt.subplot(221), plt.imshow(img, 'gray'), plt.title('original'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(dst1, 'gray'), plt.title('gaussianBlur'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(gray, 'gray'), plt.title('gray'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(dst2, 'gray'), plt.title('gaussianBlur'), plt.xticks([]), plt.yticks([])
plt.show()
中值模糊
顾名思义就是用与卷积框对应像素的中值来替代中心像素的值。这个滤波器经常用来去除椒盐噪声。前面的滤波器都是用计算得到的一个新值来取代中心像素的值,而中值滤波是用中心像素周围(也可以使他本身)的值来取代他。他能有效的去除噪声。卷积核的大小也应该是一个奇数。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 中值滤波
# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):result = image.copy()# 测量图片的长和宽w, h, = image.shape[:2]# 生成n个椒盐噪声for i in range(n):x = np.random.randint(1, w)y= np.random.randint(1, h)if np.random.randint(0, 2) == 0 :result[x, y] = 0else:result[x,y] = 255return resultimg = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
img = add_peppersalt_noise(img)
median = cv2.medianBlur(img, 5)gray = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_GRAYSCALE)
gray = add_peppersalt_noise(gray)
median_gray = cv2.medianBlur(gray, 5)plt.subplot(221), plt.imshow(img, 'gray'), plt.title('original')
plt.subplot(222), plt.imshow(median, 'gray'), plt.title('medianBlur')
plt.subplot(223), plt.imshow(gray, 'gray'), plt.title('gray')
plt.subplot(224), plt.imshow(median_gray, 'gray'), plt.title('medianBlur')
plt.show()
双边滤波
函数 cv2.bilateralFilter() 能在保持边界清晰的情况下有效的去除噪音。但是这种操作与其他滤波器相比会比较慢。我们已经知道高斯滤波器是求中心点邻近区域像素的高斯加权平均值。这种高斯滤波器只考虑像素之间的空间关系,而不会考虑像素值之间的关系(像素的相似度)。所以这种方法不会考虑一个像素是否位于边界。因此边界也会别模糊掉,而这正不是我们想要。双边滤波在同时使用空间高斯权重和灰度值相似性高斯权重。空间高斯函数确保只有邻近区域的像素对中心点有影响,灰度值相似性高斯函数确保只有与中心像素灰度值相近的才会被用来做模糊运算。所以这种方法会确保边界不会被模糊掉,因为边界处的灰度值变化比较大。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 双边滤波img = cv2.imread('./resource/opencv/image/rubberwhale1.png', cv2.IMREAD_GRAYSCALE)# 9:邻域直径,75:空间高斯函数标准差,75:灰度值相似性高斯函数标准差
dst1 = cv2.bilateralFilter(img, 9, 75, 75)plt.subplot(121), plt.imshow(img, 'gray'), plt.title('origin')
plt.subplot(122), plt.imshow(dst1, 'gray'), plt.title('bilateralFiter')
plt.show()
相关文章:

Python-OpenCV中的图像处理-图像平滑
Python-OpenCV中的图像处理-图像平滑 图像平滑平均滤波高斯模糊中值模糊双边滤波 图像平滑 使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊…...

Mongoose http server 例子
今天抽了点时间看了一下 mongoose的源码, github 地址,发现跟以前公司内部使用的不太一样,这里正好利用其 http server 例子来看一下。以前的 http message 结构体是这样的: /* HTTP message */ struct http_message {struct mg_…...

1、初识HTML
1、初识HTML 前端就是写一些基本的页面,HTML即超文本标记语言:Hyper Text Markup Language,超文本包括,文字、图片、音频、视频、动画等,HTML5,提供了一些新的元素和一些有趣的新特性,同时也建…...

线性代数(三) 线性方程组
前言 如何利用行列式,矩阵求解线性方程组。 线性方程组的相关概念 用矩阵方程表示 齐次线性方程组:Ax0;非齐次线性方程组:Axb. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的…...

Apoll 多项式规划求解
一、纵向规划 void QuarticPolynomialCurve1d::ComputeCoefficients(const float x0, const float dx0, const float ddx0, const float dx1,const float ddx1, const float p) {if (p < 0.0) {std::cout << "p should be greater than 0 at line 140." &…...

ssm亚盛汽车配件销售业绩管理统源码和论文PPT
ssm亚盛汽车配件销售业绩管理统源码和论文PPT007 开发工具:idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具:navcat,小海豚等 开发技术:java ssm tomcat8.5 研究的意义 汽车配件销售类企业近年来得到长足发展,在市场份额不断扩大同时…...

发布属于自己的 npm 包
1 创建文件夹,并创建 index.js 在文件中声明函数,使用module.exports 导出 2 npm 初始化工具包,package.json 填写包的信息(包的名字是唯一的) npm init 可在这里写包的名字,或者一路按回车,后…...

Redis主从复制和哨兵架构图,集成Spring Boot项目实战分享
目录 1. Redis 主从复制2. Redis 哨兵架构3. 集成spring boot项目案列 Redis 主从复制和哨兵架构是 Redis 集群的重要组成部分,用于提高 Redis 集群的可用性和性能。以下是 Redis 主从复制和哨兵架构的详细介绍,包括架构图和 Java 代码详解。 1. Redis …...

java中try-with-resources自动关闭io流
文章目录 java中try-with-resources自动关闭io流0 简要说明try-with-resources java中try-with-resources自动关闭io流 0 简要说明 在传统的输入输出流处理中,我们一般使用的结构如下所示,使用try - catch - finally结构捕获相关异常,最后不…...

Games101学习笔记 -光栅化
光栅化 经过MVP矩阵和视口变换后,我们就可以从相机的角度看到一个和屏幕大小一致的二维平面。 那么把这个看到的二维平面应用到我们的屏幕上的过程就是光栅化。在这儿我们需要补充一个概念-像素: 像素: 一个二位数组,数组中每个…...

Pytorch量化之Post Train Static Quantization(训练后静态量化)
使用Pytorch训练出的模型权重为fp32,部署时,为了加快速度,一般会将模型量化至int8。与fp32相比,int8模型的大小为原来的1/4, 速度为2~4倍。 Pytorch支持三种量化方式: 动态量化(Dynamic Quantization&…...

Sql奇技淫巧之EXIST实现分层过滤
在这样一个场景,我 left join 了很多张表,用这些表的不同列来过滤,看起来非常合理 但是出现的问题是 left join 其中一张或多张表出现了笛卡尔积,且无法消除 FUNCTION fun_get_xxx_helper(v_param_1 VARCHAR2,v_param_2 VARCHAR2…...

Linux下升级jdk1.8小版本
先输入java -version 查看是否安装了jdk java -version (1)如果没有返回值,直接安装新的jdk即可。 (2)如果有返回值,例如: java version "1.8.0_251" Java(TM) SE Runtime Enviro…...

【Mysql】数据库基础与基本操作
🌇个人主页:平凡的小苏 📚学习格言:命运给你一个低的起点,是想看你精彩的翻盘,而不是让你自甘堕落,脚下的路虽然难走,但我还能走,比起向阳而生,我更想尝试逆风…...

87 | Python人工智能篇 —— 机器学习算法 决策树
本教程将深入探讨决策树的基本原理,包括特征选择方法、树的构建过程以及剪枝技术,旨在帮助读者全面理解决策树算法的工作机制。同时,我们将使用 Python 和 scikit-learn 库演示如何轻松地实现和应用决策树,以及如何对结果进行可视化。无论您是初学者还是有一定机器学习经验…...

【计算机视觉】干货分享:Segmentation model PyTorch(快速搭建图像分割网络)
一、前言 如何快速搭建图像分割网络? 要手写把backbone ,手写decoder 吗? 介绍一个分割神器,分分钟搭建一个分割网络。 仓库的地址: https://github.com/qubvel/segmentation_models.pytorch该库的主要特点是&#…...
解析湖仓一体的支撑技术及实践路径
自2021年“湖仓一体”首次写入Gartner数据管理领域成熟度模型报告以来,随着企业数字化转型的不断深入,“湖仓一体”作为新型的技术受到了前所未有的关注,越来越多的企业视“湖仓一体” 为数字化转型的重要基础设施。 01 数据平台的发展历程…...

40.利用欧拉法求解微分方程组(matlab程序)
1.简述 求解微分方程的时候,如果不能将求出结果的表达式,则可以对利用数值积分对微分方程求解,获取数值解。欧拉方法是最简单的一种数值解法。前面介绍过MATLAB实例讲解欧拉法求解微分方程,今天实例讲解欧拉法求解一阶微分方程组。…...

OpenAI-Translator 实战总结
最近在极客时间学习《AI 大模型应用开发实战营》,自己一边跟着学一边开发了一个进阶版本的 OpenAI-Translator,在这里简单记录下开发过程和心得体会,供有兴趣的同学参考 功能概览 通过openai的chat API,实现一个pdf翻译器实现一个…...

【工业机器人】用于轨迹规划和执行器分析的机械手和移动机器人模型(MatlabSimulink)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

开源在线文档服务OnlyOffice
开源在线文档服务OnlyOffice应用启动与示例运行 - 掘金 ONLYOFFICE API 文档 - Example - IDEA运行Java示例 | ONLYOFFICE中文网 NEXTCLOUDonlyoffice的搭建和使用_nextcloud onlyoffice_莫冲的博客-CSDN博客 OnlyOffice java 部署使用,文件流方式 预览文件 | 言曌博…...

汽车基本常识
目录 电源KL30KL15 零部件简称 电源 KL30 KL15 零部件简称 VCU:整车控制器 直接网络管理节点 CDU:充电系统控制器 MCU:电机控制器 TCU:变速箱控制器 ABS:防抱死系统 EPS:助力转向 T-Box:远程…...

百度资深PMO阚洁受邀为第十二届中国PMO大会演讲嘉宾
百度在线网络技术(北京)有限公司资深PMO阚洁女士受邀为由PMO评论主办的2023第十二届中国PMO大会演讲嘉宾,演讲议题:运筹于股掌之间,决胜于千里之外 —— 360斡旋项目干系人。大会将于8月12-13日在北京举办,…...

为什么C++有多种整型?
C中有多种整型是为了满足不同的需求,提供更灵活和高效的整数表示方式。不同的整型具有不同的字节大小、范围和精度,可以根据应用的需求选择合适的整型类型。以下是一些原因解释为什么C有多种整型: 内存和性能优化:不同的整型在内存…...

玩一玩通义千问Qwen开源版,Win11 RTX3060本地安装记录!
大概在两天前,阿里做了一件大事儿。 就是开源了一个低配版的通义千问模型--通义千问-7B-Chat。 这应该是国内第一个大厂开源的大语言模型吧。 虽然是低配版,但是在各类测试里面都非常能打。 官方介绍: Qwen-7B是基于Transformer的大语言模…...

oracle积累增量和差异增量
积累增量和差异增量: 对于 RMAN 来说,积累增量备份和差异增量备份都是增量备份的一种形式,它们之间的区别在于备份的范围和备份集的方式。 积累增量备份:在进行积累增量备份时,RMAN 会备份自最后一次完全备份或增量备…...

利用C++nlohmann库解析json文件
json文件示例: 代码运行环境VS2019 一、git下载nlohmann库文件源代码 源代码文件目录 二、利用VS2019新建工程,并配置项目属性 配置VC目录---包含目录 三、项目源代码 #include <iostream> #include <fstream> #include <nlohmann/jso…...

OpenCV 中的光流 (C++/Python)
什么是光流? 光流是一项视频中两个连续帧之间每像素运动估计的任务。基本上,光流任务意味着计算像素的位移矢量作为两个相邻图像之间的对象位移差。光流的主要思想是估计物体由其运动或相机运动引起的位移矢量。 理论基础 假设我们有一个灰度图像——具有像素强度的矩阵。我…...

第9集丨Vue 江湖 —— 监测数据原理
目录 一、修改数据时的一个问题1.1 现象一1.2 现象二 二、Vue监测数据原理2.1 模拟一个数据监测2.2 数据劫持2.3 Vue.set()/vm.$set()2.4 基本原理2.4.1 如何监测对象中的数据?2.4.2 如何监测数组中的数据?2.4.3 修改数组中的某个元素 2.5 案例2.5.1 需求功能2.5.2 实现 一、…...

【YOLO】替换骨干网络为轻量级网络MobileNet3
替换骨干网络为轻量级网络MobileNet_v3 上一章 模型网络结构解析&增加小目标检测 文章目录 替换骨干网络为轻量级网络MobileNet_v3前言一、MobileNetV3介绍二、MobileNetV2&MobileNetV3三、MobileNetV3网络结构1. 结构查看2. 查看每层featuremap大小三、YOLOV5替换骨干…...