当前位置: 首页 > news >正文

【Tensorflow2.0】tensorflow中的Dense函数解析

目录

  • 1 作用
  • 2 例子
  • 3 与torch.nn.Linear的区别
  • 4 参考文献

1 作用

注意此处Tensorflow版本是2.0+。
由于本人是Pytorch用户,对Tensorflow不是很熟悉,在读到用tf写的代码时就很是麻烦。如图所示,遇到了如下代码:

h = Dense(units=adj_dim, activation=None)(dec_in)

  Dense层就是全连接层,对于层方式的初始化的时候,layers.Dense(units,activation)函数一般只需要指定输出节点数Units和激活函数类型即可。输入节点数将根据第一次运算时输入的shape确定,同时输入、输出节点自动创建并初始化权值w和偏置向量b。

下面是Dense的接口

Dense(units,activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

units, 代表该层的输出维度
activation=None, 激活函数.但是默认 liner
use_bias=True, 是否使用b 直线 y=ax+b 中的 b

此处没有写 iuput 的情况, 通常会有两种写法:

1 : Dense(units,input_shape())2 : Dense(units)(x) #这里的 x 是以张量.

Dense(n)(x):=ReLU(Wx+b)Dense \ (n) \ (x):=ReLU(Wx+b)Dense (n) (x):=ReLU(Wx+b)
W 是权重函数, Dense() 会随机给 W 一个初始值。所以这里跟Pytorch的nn.linear()一样。

2 例子

# 使用第一种方法进行初始化
# 作为 Sequential 模型的第一层,需要指定输入维度。可以为 input_shape=(16,) 或者 input_dim=16,这两者是等价的。
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
# 其输出数组的尺寸为 (*, 32)# 在第一层之后,就不再需要指定输入的尺寸了:
model.add(Dense(32))

3 与torch.nn.Linear的区别

# Pytorch实现
trd = torch.nn.Linear(in_features = 3, out_features = 30)
y = trd(torch.ones(5, 3))
print(y.size())
# torch.Size([5, 30])# Tensorflow实现
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(30, input_shape=(5,), activation=None))
————————————————————————————————————
tfd = tf.keras.layers.Dense(30, input_shape=(3,), activation=None)
x = tfd(tf.ones(shape=(5, 3)))
print(x.shape)
# (5, 30)
上面Tensorflow的实现方式相同,但是我存在疑惑

4 参考文献

[1]dense层、激活函数、输出层设计
[2]Dense(units, activation=None,)初步
[3]深入理解 keras 中 Dense 层参数
[4]tensorflow - Tensorflow 的 tf.keras.layers.Dense 和 PyTorch 的 torch.nn.Linear 的区别?

相关文章:

【Tensorflow2.0】tensorflow中的Dense函数解析

目录1 作用2 例子3 与torch.nn.Linear的区别4 参考文献1 作用 注意此处Tensorflow版本是2.0。 由于本人是Pytorch用户,对Tensorflow不是很熟悉,在读到用tf写的代码时就很是麻烦。如图所示,遇到了如下代码: h Dense(unitsadj_di…...

PyTorch学习笔记:data.RandomSampler——数据随机采样

PyTorch学习笔记:data.RandomSampler——数据随机采样 torch.utils.data.RandomSampler(data_source, replacementFalse, num_samplesNone, generatorNone)功能:随即对样本进行采样 输入: data_source:被采样的数据集合replace…...

设计模式(七)----创建型模式之建造者模式

1、概述 将一个复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。 分离了部件的构造(由Builder来负责)和装配(由Director负责)。 从而可以构造出复杂的对象。这个模式适用于:某个对象的构建过程复杂的情况。 由于实现了构建和装配的解…...

DCGAN

DCGAN的论文地址[https://arxiv.org/pdf/1511.06434.pdf]。DCGAN是GAN的一个变体,DCGAN就是将CNN和原始的GAN结合到一起,生成网络和鉴别网络都运用到了深度卷积神经网络。DCGAN提高了基础GAN的稳定性和生成结果质量。DCGAN主要是在网络架构上改进了原始的…...

【速通版】吴恩达机器学习笔记Part3

目录 1.多元线性回归 a.特征缩放 可行的缩放方式: 1.除以最大值: 2.mean normalization: 3.Z-score normalization b.learning curve: c.learning rate: 2.多项式回归 3.classification logistics regression 1.多元线性回归 其意义很…...

【leetcode】跳跃游戏

一、题目描述 给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标。 示例 1: 输入:nums [2,3,1,1,4] 输出:true 解释&#x…...

论文投稿指南——中文核心期刊推荐(冶金工业 2)

【前言】 🚀 想发论文怎么办?手把手教你论文如何投稿!那么,首先要搞懂投稿目标——论文期刊 🎄 在期刊论文的分布中,存在一种普遍现象:即对于某一特定的学科或专业来说,少数期刊所含…...

【GPLT 二阶题目集】L2-044 大众情人

人与人之间总有一点距离感。我们假定两个人之间的亲密程度跟他们之间的距离感成反比,并且距离感是单向的。例如小蓝对小红患了单相思,从小蓝的眼中看去,他和小红之间的距离为 1,只差一层窗户纸;但在小红的眼里&#xf…...

SpringBoot整合(二)MyBatisPlus技术详解

MyBatisPlus详解 一、标准数据层开发 MyBatisPlus(简称MP)是基于MyBatis框架基础上开发的增强型工具,旨在简化开发、提高效率 MyBatisPlus的官网为:https://mp.baomidou.com/ 1.1 标准CRUD 1.2 新增 int insert (T t)T:泛型&#xff0c…...

导入importk8s集群,添加node节点,rancher agent,Rancher Agent设置选项

curl方式: Rancher在每个节点上部署代理以与节点通信。 此页面描述了可以传递给代理的选项,要使用这些选项,您需要采用创建自定义集群 ,并在docker run添加节点时将选项添加到生成的命令中。 常规选项 参数环境变量描述—serve…...

C++11--右值引用与移动语义

目录 基本概念 左值与右值 左值引用与右值引用 右值引用的使用场景和意义 左值引用的使用场景 右值引用和移动语义 移动构造和拷贝构造的区别 编译器的优化 移动赋值和赋值运算符重载的区别 右值引用的其他应用场景 完美转发 万能引用 完美转发保持值属性 完美转…...

Python SQLAlchemy入门教程

本文将以Mysql举例,介绍sqlalchemy的基本用法。其中,Python版本为2.7,sqlalchemy版本为1.1.6。 一. 介绍 SQLAlchemy是Python中最有名的ORM工具。 关于ORM: 全称Object Relational Mapping(对象关系映射&#xff0…...

你是真的“C”——操作符详解【下篇】+整形提升+算术转换

你是真的“C”——操作符详解下篇😎前言🙌操作符详解【上篇】内容:操作符详解【下篇】内容:1、 条件操作符2、逗号表达式:3、下标引用、函数调用和结构成员3、访问一个结构的成员表达式求值1、隐式类型转换&#xff1a…...

文本匹配SimCSE模型代码详解以及训练自己的中文数据集

前言 在上一篇博客文本匹配中的示例代码中使用到了一个SimCSE模型,用来提取短文本的特征,然后计算特征相似度,最终达到文本匹配的目的。但是该示例代码中的短文本是用的英文短句,其实SimCSE模型也可以用于中文短文本的特征提取&a…...

Biotin-PEG-FITC 生物素聚乙二醇荧光素;FITC-PEG-Biotin 科研用生物试剂

结构式: ​Biotin-PEG-FITC 生物素聚乙二醇荧光素 英文名称:Biotin-PEG-Fluorescein 中文名称:生物素聚乙二醇荧光素 外观:黄色液体、半固体或固体,取决于分子量。 溶剂:溶于大部分有机溶剂,…...

FISCO BCOS 搭建区块链,在SpringBoot中调用合约

一、搭建区块链 使用的是FISCO BCOS 和 WeBASE-Front来搭建区块链,详细教程: https://blog.csdn.net/yueyue763184/article/details/128924144?spm1001.2014.3001.5501 搭建好能达到下图效果即可: 二、部署智能合约与导出java文件、SDK证…...

面试官:int和Integer有什么区别?

回答思路: 原始数据类型和包装类介绍 主要区别(数据使用内存) 自动装箱、自动拆箱机制和实践原则 回答总结: int 是8种基本数据类型(byte、boolean、char、short、int、long、float、double)之一&#xff…...

MFC常用技巧

MFC常用技巧1、句柄MFC中如何获取窗口的句柄2、字符串CString转char*Unicode下char *转换为CString3、Visual C 64 位迁移的常见问题(数据类型、指针类型的长度问题)4、c - 将_beginthread返回的uintptr_t转换为HANDLE是否安全1、句柄 MFC中如何获取窗口…...

C++ —— 多态

目录 1.多态的概念 2.多态的定义及实现 2.1构成多态的两个硬性条件 2.2虚函数的重写 2.3override和final 3.抽象类 3.1接口继承和实现继承 4.多态原理 4.1虚函数表 4.2原理 4.3静态绑定和动态绑定 5.单继承和多继承体系的虚函数表 5.1单继承体系的虚函数表 5.2多继…...

java agent设计开发概要

agent开发设计 agent 开发的一些心得,适合熟悉agent或者有agent开发需求的同学 1 有个基础的agent,是java 标准的agent。这是agent代码入口 2 设计包结构, 基础agent agent下有plugin,加载plugin可以自己定义一个类加载器 plugin&#xff1…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂&#xff…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言: 类加载器 1. …...