【Tensorflow2.0】tensorflow中的Dense函数解析
目录
- 1 作用
- 2 例子
- 3 与torch.nn.Linear的区别
- 4 参考文献
1 作用
注意此处Tensorflow版本是2.0+。
由于本人是Pytorch用户,对Tensorflow不是很熟悉,在读到用tf写的代码时就很是麻烦。如图所示,遇到了如下代码:
h = Dense(units=adj_dim, activation=None)(dec_in)
Dense层就是全连接层,对于层方式的初始化的时候,layers.Dense(units,activation)函数一般只需要指定输出节点数Units和激活函数类型即可。输入节点数将根据第一次运算时输入的shape确定,同时输入、输出节点自动创建并初始化权值w和偏置向量b。
下面是Dense的接口
Dense(units,activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
units, 代表该层的输出维度
activation=None, 激活函数.但是默认 liner
use_bias=True, 是否使用b 直线 y=ax+b 中的 b
此处没有写 iuput 的情况, 通常会有两种写法:
1 : Dense(units,input_shape())2 : Dense(units)(x) #这里的 x 是以张量.
Dense(n)(x):=ReLU(Wx+b)Dense \ (n) \ (x):=ReLU(Wx+b)Dense (n) (x):=ReLU(Wx+b)
W 是权重函数, Dense() 会随机给 W 一个初始值。所以这里跟Pytorch的nn.linear()一样。
2 例子
# 使用第一种方法进行初始化
# 作为 Sequential 模型的第一层,需要指定输入维度。可以为 input_shape=(16,) 或者 input_dim=16,这两者是等价的。
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
# 其输出数组的尺寸为 (*, 32)# 在第一层之后,就不再需要指定输入的尺寸了:
model.add(Dense(32))
3 与torch.nn.Linear的区别
# Pytorch实现
trd = torch.nn.Linear(in_features = 3, out_features = 30)
y = trd(torch.ones(5, 3))
print(y.size())
# torch.Size([5, 30])# Tensorflow实现
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(30, input_shape=(5,), activation=None))
————————————————————————————————————
tfd = tf.keras.layers.Dense(30, input_shape=(3,), activation=None)
x = tfd(tf.ones(shape=(5, 3)))
print(x.shape)
# (5, 30)
上面Tensorflow的实现方式相同,但是我存在疑惑
4 参考文献
[1]dense层、激活函数、输出层设计
[2]Dense(units, activation=None,)初步
[3]深入理解 keras 中 Dense 层参数
[4]tensorflow - Tensorflow 的 tf.keras.layers.Dense 和 PyTorch 的 torch.nn.Linear 的区别?
相关文章:
【Tensorflow2.0】tensorflow中的Dense函数解析
目录1 作用2 例子3 与torch.nn.Linear的区别4 参考文献1 作用 注意此处Tensorflow版本是2.0。 由于本人是Pytorch用户,对Tensorflow不是很熟悉,在读到用tf写的代码时就很是麻烦。如图所示,遇到了如下代码: h Dense(unitsadj_di…...
PyTorch学习笔记:data.RandomSampler——数据随机采样
PyTorch学习笔记:data.RandomSampler——数据随机采样 torch.utils.data.RandomSampler(data_source, replacementFalse, num_samplesNone, generatorNone)功能:随即对样本进行采样 输入: data_source:被采样的数据集合replace…...
设计模式(七)----创建型模式之建造者模式
1、概述 将一个复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。 分离了部件的构造(由Builder来负责)和装配(由Director负责)。 从而可以构造出复杂的对象。这个模式适用于:某个对象的构建过程复杂的情况。 由于实现了构建和装配的解…...
DCGAN
DCGAN的论文地址[https://arxiv.org/pdf/1511.06434.pdf]。DCGAN是GAN的一个变体,DCGAN就是将CNN和原始的GAN结合到一起,生成网络和鉴别网络都运用到了深度卷积神经网络。DCGAN提高了基础GAN的稳定性和生成结果质量。DCGAN主要是在网络架构上改进了原始的…...
【速通版】吴恩达机器学习笔记Part3
目录 1.多元线性回归 a.特征缩放 可行的缩放方式: 1.除以最大值: 2.mean normalization: 3.Z-score normalization b.learning curve: c.learning rate: 2.多项式回归 3.classification logistics regression 1.多元线性回归 其意义很…...
【leetcode】跳跃游戏
一、题目描述 给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标。 示例 1: 输入:nums [2,3,1,1,4] 输出:true 解释&#x…...
论文投稿指南——中文核心期刊推荐(冶金工业 2)
【前言】 🚀 想发论文怎么办?手把手教你论文如何投稿!那么,首先要搞懂投稿目标——论文期刊 🎄 在期刊论文的分布中,存在一种普遍现象:即对于某一特定的学科或专业来说,少数期刊所含…...
【GPLT 二阶题目集】L2-044 大众情人
人与人之间总有一点距离感。我们假定两个人之间的亲密程度跟他们之间的距离感成反比,并且距离感是单向的。例如小蓝对小红患了单相思,从小蓝的眼中看去,他和小红之间的距离为 1,只差一层窗户纸;但在小红的眼里…...
SpringBoot整合(二)MyBatisPlus技术详解
MyBatisPlus详解 一、标准数据层开发 MyBatisPlus(简称MP)是基于MyBatis框架基础上开发的增强型工具,旨在简化开发、提高效率 MyBatisPlus的官网为:https://mp.baomidou.com/ 1.1 标准CRUD 1.2 新增 int insert (T t)T:泛型,…...
导入importk8s集群,添加node节点,rancher agent,Rancher Agent设置选项
curl方式: Rancher在每个节点上部署代理以与节点通信。 此页面描述了可以传递给代理的选项,要使用这些选项,您需要采用创建自定义集群 ,并在docker run添加节点时将选项添加到生成的命令中。 常规选项 参数环境变量描述—serve…...
C++11--右值引用与移动语义
目录 基本概念 左值与右值 左值引用与右值引用 右值引用的使用场景和意义 左值引用的使用场景 右值引用和移动语义 移动构造和拷贝构造的区别 编译器的优化 移动赋值和赋值运算符重载的区别 右值引用的其他应用场景 完美转发 万能引用 完美转发保持值属性 完美转…...
Python SQLAlchemy入门教程
本文将以Mysql举例,介绍sqlalchemy的基本用法。其中,Python版本为2.7,sqlalchemy版本为1.1.6。 一. 介绍 SQLAlchemy是Python中最有名的ORM工具。 关于ORM: 全称Object Relational Mapping(对象关系映射࿰…...
你是真的“C”——操作符详解【下篇】+整形提升+算术转换
你是真的“C”——操作符详解下篇😎前言🙌操作符详解【上篇】内容:操作符详解【下篇】内容:1、 条件操作符2、逗号表达式:3、下标引用、函数调用和结构成员3、访问一个结构的成员表达式求值1、隐式类型转换:…...
文本匹配SimCSE模型代码详解以及训练自己的中文数据集
前言 在上一篇博客文本匹配中的示例代码中使用到了一个SimCSE模型,用来提取短文本的特征,然后计算特征相似度,最终达到文本匹配的目的。但是该示例代码中的短文本是用的英文短句,其实SimCSE模型也可以用于中文短文本的特征提取&a…...
Biotin-PEG-FITC 生物素聚乙二醇荧光素;FITC-PEG-Biotin 科研用生物试剂
结构式: Biotin-PEG-FITC 生物素聚乙二醇荧光素 英文名称:Biotin-PEG-Fluorescein 中文名称:生物素聚乙二醇荧光素 外观:黄色液体、半固体或固体,取决于分子量。 溶剂:溶于大部分有机溶剂,…...
FISCO BCOS 搭建区块链,在SpringBoot中调用合约
一、搭建区块链 使用的是FISCO BCOS 和 WeBASE-Front来搭建区块链,详细教程: https://blog.csdn.net/yueyue763184/article/details/128924144?spm1001.2014.3001.5501 搭建好能达到下图效果即可: 二、部署智能合约与导出java文件、SDK证…...
面试官:int和Integer有什么区别?
回答思路: 原始数据类型和包装类介绍 主要区别(数据使用内存) 自动装箱、自动拆箱机制和实践原则 回答总结: int 是8种基本数据类型(byte、boolean、char、short、int、long、float、double)之一ÿ…...
MFC常用技巧
MFC常用技巧1、句柄MFC中如何获取窗口的句柄2、字符串CString转char*Unicode下char *转换为CString3、Visual C 64 位迁移的常见问题(数据类型、指针类型的长度问题)4、c - 将_beginthread返回的uintptr_t转换为HANDLE是否安全1、句柄 MFC中如何获取窗口…...
C++ —— 多态
目录 1.多态的概念 2.多态的定义及实现 2.1构成多态的两个硬性条件 2.2虚函数的重写 2.3override和final 3.抽象类 3.1接口继承和实现继承 4.多态原理 4.1虚函数表 4.2原理 4.3静态绑定和动态绑定 5.单继承和多继承体系的虚函数表 5.1单继承体系的虚函数表 5.2多继…...
java agent设计开发概要
agent开发设计 agent 开发的一些心得,适合熟悉agent或者有agent开发需求的同学 1 有个基础的agent,是java 标准的agent。这是agent代码入口 2 设计包结构, 基础agent agent下有plugin,加载plugin可以自己定义一个类加载器 plugin࿱…...
node.js笔记-模块化(commonJS规范),包与npm(Node Package Manager)
目录 模块化 node.js中模块的分类 模块的加载方式 模块作用域 向外共享模块作用域中的成员 向外共享成员 包与npm(Node package Manager) 什么是包? 包的来源 为什么需要包? 查找和下载包 npm下载和卸载包命令 配置np…...
Linux 磁盘坏块修复处理(错误:read error: Input/output error)
当磁盘出现坏块时,你对所关联的文件进行读取时,一般会出现 read error: Input/output error 这样的错误。 反过来讲,当你看到 read error: Input/output error 这种错误时,很大可能就是磁盘出现了坏块问题。 解决步骤:…...
API 面试四连杀:接口如何设计?安全如何保证?签名如何实现?防重如何实现?
下面我们就来讨论下常用的一些API设计的安全方法,可能不一定是最好的,有更牛逼的实现方式,但是这篇是我自己的经验分享. 一、token 简介 Token:访问令牌access token, 用于接口中, 用于标识接口调用者的身份、凭证,减…...
操作系统题目收录(六)
1、某系统采用基于优先权的非抢占式进程调度策略,完成一次进程调度和进程切换的系统时间开销为1us。在T时刻就绪队列中有3个进程P1P_1P1、P2P_2P2和P3P_3P3,其在就绪队列中的等待时间、需要的CPU时间和优先权如下表所示。若优先权值大的进程优先获…...
2023年十款开源测试开发工具推荐!
今天为大家奉献一篇测试开发工具集锦干货。在本篇文章中,将给大家推荐10款日常工作中经常用到的测试开发工具神器,涵盖了自动化测试、性能压测、流量复制、混沌测试、造数据等。 1、AutoMeter-API 自动化测试平台 AutoMeter 是一款针对分布式服务&…...
MySQL慢查询分析和性能优化
1 背景我们的业务服务随着功能规模扩大,用户量扩增,流量的不断的增长,经常会遇到一个问题,就是数据存储服务响应变慢。导致数据库服务变慢的诱因很多,而RD最重要的工作之一就是找到问题并解决问题。下面以MySQL为例子&…...
C++学习笔记(四)
组合、继承。委托(类与类之间的关系) 复合 queue类里有一个deque,那么他们的关系叫做复合。右上角的图表明复合的概念。上图的特例表明,queue中的功能都是通过调用c进行实现(adapter)。 复合关系下的构造和…...
【4】深度学习之Pytorch——如何使用张量处理时间序列数据集(共享自行车数据集)
表格数据 表格中的每一行都独立于其他行,他们的顺序页没有任何关系。并且,没有提供有关行之前和行之后的列编码信息。 表格类型的数据是指通过表格的形式表示的数据,它以行和列的方式组织数据。表格中的每一行代表一个数据项,每…...
mulesoft MCIA 破釜沉舟备考 2023.02.10.01
mulesoft MCIA 破釜沉舟备考 2023.02.10.01 1. What is a defining charcateristic of an integration-Platform-as-a-Service(iPaaS)?2. An application deployed to a runtime fabric environment with two cluster replicas is designed to periodically trigger of flow f…...
干货 | PCB拼板,那几条很讲究的规则!
拼板指的是将一张张小的PCB板让厂家直接给拼做成一整块。一、为什么要拼板呢,也就是说拼板的好处是什么?1.为了满足生产的需求。有些PCB板太小,不满足做夹具的要求,所以需要拼在一起进行生产。2.提高SMT贴片的焊接效率。只需要过一…...
我想建网站/百度账号登录入口
(重发下我这篇原发于 2014-03-18 的网易博客,原博客被网易莫名禁掉了。。被迫手动搬家,忧伤)现在好像各种题目出树已经出烦了,开始出仙人掌了。什么时候咱们不出动态树了,搞个Link-Cut Cactus!最…...
网站快照明天更新是什么情况/郑州网站seo外包
关于SYS密码忘记,或者明明正确,却报密码不正确的解决方案参考文章: (1)关于SYS密码忘记,或者明明正确,却报密码不正确的解决方案 (2)https://www.cnblogs.com/yutianqi…...
有关中国文明网联盟网站建设活动方案/太原优化排名推广
文档下载地址: http://download.csdn.net/detail/lvjin110/7490281...
做网站月薪10万/搜索引擎优化的内部优化
UG爱好者可可 关注微信号每天收听我们的消息 UG爱好者为您推送精品阅读大家好,我是可可老师,欢迎大家订阅UG爱好者! 今天分享UG软件鼠标和键盘操作的快捷操作方式-新手必学1.鼠标 鼠标左键:可以在菜单或对话框中选择命令或选项,也…...
有什么办法可以在备案期间网站不影响seo/免费seo公司
参考资料:http://www.cnblogs.com/dreamvibe/p/4349886.html 为什么转换成对偶问题: 首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解。而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式&a…...
低价网站建设怎么样/百度官网
前些日子完成了一个extension for nf_conntrack底层基础设施,后来写了一个测试代码,将:1.一个数据流两个方向的路由结果;2.如果数据流目的地是本机,则和该流关联的socket; 缓存在了conntrack的extension中。…...