OpenCV-Python中的图像处理-视频分析
OpenCV-Python中的图像处理-视频分析
- 视频分析
- Meanshift算法
- Camshift算法
- 光流
- Lucas-Kanade Optical Flow
- Dense Optical Flow
视频分析
学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象:
Meanshift算法
Meanshift 算法的基本原理是和很简单的。假设我们有一堆点(比如直方
图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗
口移动到最大灰度密度处(或者是点最多的地方)。如下图所示:

初始窗口是蓝色的“C1”,它的圆心为蓝色方框“C1_o”,而窗口中所有点质心却是“C1_r”(小的蓝色圆圈),很明显圆心和点的质心没有重合。所以移动圆心 C1_o 到质心 C1_r,这样我们就得到了一个新的窗口。这时又可以找到新窗口内所有点的质心,大多数情况下还是不重合的,所以重复上面的操作:将新窗口的中心移动到新的质心。就这样不停的迭代操作直到窗口的中心和其所包含点的质心重合为止(或者有一点小误差)。按照这样的操作我们的窗口最终会落在像素值(和)最大的地方。如上图所示“C2”是窗口的最后位址,我们可以看出来这个窗口中的像素点最多。
要在 OpenCV 中使用 Meanshift 算法首先我们要对目标对象进行设置,
计算目标对象的直方图,这样在执行 meanshift 算法时我们就可以将目标对
象反向投影到每一帧中去了。另外我们还需要提供窗口的起始位置。在这里我
们值计算 H( Hue)通道的直方图,同样为了避免低亮度造成的影响,我们使
用函数 cv2.inRange() 将低亮度的值忽略掉。
import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')ret,frame = cap.read()# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)while(1):ret, frame = cap.read()if ret == True:hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)ret, track_window = cv2.meanShift(dst, track_window, term_crit)x,y,w,h = track_windowimg2 = cv2.rectangle(frame, (x,y), (x+w, y+h), 255, 2)k = cv2.waitKey(60)&0xFFif k == 27:breakelse:cv2.imshow('img', img2)else:breakcap.release()
cv2.destroyAllWindows()


Camshift算法
与 Meanshift 基本一样,但是返回的结果是一个带旋转角度的矩形以及这个矩形的参数(被用到下一次迭代过程中)。
import numpy as np
import cv2
from matplotlib import pyplot as plt
# 视频下载地址https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4
cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')# take first frame of the video
ret, frame = cap.read()# setup initial location of window
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
track_window = (x, y, w, h)
# set up the ROI for tracking
roi = frame[y:y+h, x:x+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by at least 1 pt
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )while(1):ret, frame = cap.read()if ret == True:hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)# apply camshift to get the new locationret, track_window = cv2.CamShift(dst, track_window, term_crit)# Draw it on imagepts = cv2.boxPoints(ret)pts = np.int0(pts)img2 = cv2.polylines(frame,[pts],True, 255,2)k = cv2.waitKey(30) & 0xffif k == 27:breakelse:cv2.imshow('img2',img2)else:cap.release()cv2.destroyAllWindows()


光流
Lucas-Kanade Optical Flow
- 光流的概念以及 Lucas-Kanade 光流法
- 函数 cv2.calcOpticalFlowPyrLK() 对图像中的特征点进行跟踪
import numpy as np
import cv2cap = cv2.VideoCapture('./resource/opencv/video/slow_traffic_small.mp4')# params for Shi-Tomasi corner detection
feature_params = dict(maxCorners = 100,qualityLevel = 0.3,minDistance = 7,blockSize = 7)# parameters for lucas kanade optical flow
# maxLevel 为使用的图像金字塔层数
lk_params = dict(winSize = (15,15),maxLevel = 2,criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0, 255, (100, 3))# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)while(1):ret, frame = cap.read()frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# calculate optical flow 能够获取点的新位置p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)# Select good pointsgood_new = p1[st==1]good_old = p0[st==1]# draw the tracksfor i,(new, old) in enumerate(zip(good_new, good_old)):a,b = new.ravel()c,d = old.ravel()mask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), color[i].tolist(), 2)frame = cv2.circle(frame, (int(a), int(b)), 5, color[i].tolist(), -1)img = cv2.add(frame, mask)cv2.imshow('frame', img)k = cv2.waitKey(30) & 0xFFif k == 27:breakold_gray = frame_gray.copy()p0 = good_new.reshape(-1, 1, 2)cv2.destroyAllWindows()
cap.release()

Dense Optical Flow
import numpy as np
import cv2 as cvcap = cv.VideoCapture('./resource/opencv/video/vtest.avi')
ret, frame1 = cap.read()
prvs = cv.cvtColor(frame1, cv.COLOR_BGR2GRAY)
hsv = np.zeros_like(frame1)
hsv[..., 1] = 255
while(1):ret, frame2 = cap.read()if not ret:print('No frames grabbed!')breaknext = cv.cvtColor(frame2, cv.COLOR_BGR2GRAY)flow = cv.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)mag, ang = cv.cartToPolar(flow[..., 0], flow[..., 1])hsv[..., 0] = ang*180/np.pi/2hsv[..., 2] = cv.normalize(mag, None, 0, 255, cv.NORM_MINMAX)bgr = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)cv.imshow('frame2', bgr)k = cv.waitKey(30) & 0xffif k == 27:breakelif k == ord('s'):cv.imwrite('./resource/opencv/video/opticalfb.png', frame2)cv.imwrite('./resource/opencv/video/opticalhsv.png', bgr)prvs = next
cv.destroyAllWindows()


相关文章:
OpenCV-Python中的图像处理-视频分析
OpenCV-Python中的图像处理-视频分析 视频分析Meanshift算法Camshift算法光流Lucas-Kanade Optical FlowDense Optical Flow 视频分析 学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象: Meanshift算法 Meanshift 算法的基本原理是和很简单的。假设我们有一堆…...
STM32 CubeMX (第四步Freertos内存管理和CPU使用率)
STM32 CubeMX STM32 CubeMX (第四步Freertos内存管理和CPU使用率) STM32 CubeMX一、STM32 CubeMX设置时钟配置HAL时基选择TIM1(不要选择滴答定时器;滴答定时器留给OS系统做时基)使用STM32 CubeMX 库,配置Fr…...
题解 | #1012.Equalize the Array# 2023杭电暑期多校10
1012.Equalize the Array 签到 题目大意 定义一个数组的 m o d e mode mode 是其中出现次数最多的数字(可不唯一) 给定一个数组 a a a ,每次操作可以选定其一个 m o d e mode mode 并使数组中所有与之相等的元素 1 1 1 问任意次操作后…...
UE4/5C++多线程插件制作(二十一、使用)
目录 DemoPawn.h DemoPawn.cpp 会出现的bug 插件 相关的插件制作在上一节已经完成了。 具体的使用方式在第0章已经写了,get之后去绑定即可。 而后笔者做了一个接口,具体的绑定方式也就在这个接口里面。 接下来最重要的是进行使用,对此我做了一个与蓝图相关的接口,里…...
【C#】关于?的用法
1、可空类型修饰符(?) 如: int? x null;//可空类型默认值都是null,而值类型如int默认值为0、bool默认值为false等 bool? result true;2、三目运算符(?:) 如: bool…...
linux——mysql的高可用MHA
目录 一、概述 一、概念 二、组成 三、特点 四、工作原理 二、案例 三、构建MHA 一、基础环境 二、ssh免密登录 三、主从复制 master slave1 四、MHA安装 一、环境 二、安装node 三、安装manager 一、概述 一、概念 MHA(MasterHigh Availability&a…...
【学习日记】【FreeRTOS】空闲任务与阻塞延时
写在前面 本文是基于野火 RTOS 教程对空闲任务和阻塞延时的详解。 一、什么是任务中的阻塞延时 说到阻塞延时,笔者的第一反应就是在单片机的 while 循环中,使用一个 for 循环不断递减一个大数,通过 CPU 不断执行一条指令的耗时进行延时。这…...
衣服材质等整理(时常更新)
参考文章&图片来源 https://zhuanlan.zhihu.com/p/390341736 00. 天然纤维 01. 化学纤维 02. 聚酯纤维(即,涤纶) 一种由有机二元酸和二元醇通过化学缩聚制成的合成纤维。具有出色的抗皱性和保形性,所制衣物在穿着过程中不容…...
电子商务环境下旅游价值链
迈克尔 ・ 波特(Michael E. Porter)在其《竞争优势》一书中提出了“价值链” 的概念,并认为一家企业最核心的竞争优势在于对价值链的设计。虽然迈克尔 ・ 波 特提出的价值链主要是针对企业内部的价值链,但他视价值链为一系列连续完成的 活动ÿ…...
spring源码分析bean的生命周期(下)
doGetBean()执行过程 createBean()执行过程 一、DependsOn注解 spring创建对象之前会判断类上是否加了DependsOn注解,加了会遍历然后会添加到一个map中,spring会先创建DependsOn注解指定的类 二、spring类加载器 在合并BeanDefinition,确定…...
完美解决Github提交PR后报错:File is not gofumpt-ed (gofumpt)
问题阐述 最近在Github上提交PR后,遇到了这么一个问题:golangci-lint运行失败,具体原因是File is not gofumpt-ed (gofumpt)。 名词解释 golangci-lint: golangci-lint 是Go语言社区中常用的代码质量检查工具,它可以…...
pytorch3d成功安装
一、pytorch3d是什么? PyTorch3D的目标是帮助加速深度学习和3D交叉点的研究。3D数据比2D图像更复杂,在从事Mesh R-CNN和C3DPO等项目时,我们遇到了一些挑战,包括3D数据表示、批处理和速度。我们开发了许多有用的算子和抽象…...
【vue3】同个页面引入多个图表组件实现自适应的方法
首先说明,此方案仅针对vue3项目在同一个页面引入了多个图表组件,因为我发现不能框架不同的引入,resize的写法还不同 window.addEventListener("resize", function() {...// 在此处重新调用即可 }以下是具体写法: 循环…...
一文了解汽车芯片的分类及用途介绍
汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片&am…...
Linux0.11内核源码解析-truncate.c
truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块,包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0,并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…...
LED驱动型IC芯片的原理介绍
一、LED驱动器是什么 LED驱动器(LED Driver),是指驱动LED发光或LED模块组件正常工作的电源调整电子器件。由于LED PN结的导通特性决定,它能适应的电源电压和电流变动范围十分狭窄,稍许偏离就可能无法点亮LED或者发光效…...
VLAN实验
实验题目如下: 实验拓扑如下: 实验要求如下: 【1】PC1/3的接口均为access模式,且属于van2,在同一网段 【2】PC2/4/5/6的IP地址在同一网段,与PC1/3不在同一网段 【3】PC2可以访问4/5/6,PC4不能…...
Qt应用开发(基础篇)——高级纯文本窗口 QPlainTextEdit
一、前言 QPlainTextEdit类继承于QAbstractScrollArea,QAbstractScrollArea继承于QFrame,是Qt用来显示和编辑纯文本的窗口。 滚屏区域基类https://blog.csdn.net/u014491932/article/details/132245486?spm1001.2014.3001.5501框架类QFramehttps://blo…...
三维可视化平台有哪些?Sovit3D可视化平台怎么样?
随着社会经济的发展和数字技术的进步,互联网行业发展迅速。为了适应新时代社会发展的需要,大数据在这个社会经济发展过程中随着技术的进步而显得尤为重要。同时,大数据技术的快速发展进程也推动了可视化技术的飞速发展,国内外各类…...
Xxl-job安装部署以及SpringBoot集成Xxl-job使用
1、安装Xxl-job: 可以使用docker拉取镜像部署和源码编译两种方式,这里选择源码编译安装。 代码拉取地址: https://github.com/xuxueli/xxl-job/tree/2.1.2 官方开发文档: https://www.xuxueli.com/xxl-job/#%E3%80%8A%E5%88%…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...
