当前位置: 首页 > news >正文

Deep Learning With Pytorch - 最基本的感知机、贯序模型/分类、拟合

文章目录

如何利用pytorch创建一个简单的网络模型?

Step1. 感知机,多层感知机(MLP)的基本结构

感知机(Perceptron)是神经网络中的基本单元,神经网络的雏形,也被称作神经元(原理就是仿照生物上的神经元)、单层神经网络。

通过设置不同的权重,并加上一个激活函数(判决门限),就构成了一个单层感知机的基本网络结构,可以实现与或非三种基本逻辑:
在这里插入图片描述
在这里插入图片描述
但是单层感知机的功能还是具有局限性,因为它毕竟只是一种二元线性分类模型(其输入为实例的特征向量,输出为实例的类别,取1和0【sigmoid激活判决】或+1和-1【sign激活判决】 ),像同或、异或这种稍微复杂一点的逻辑,就无法用单层感知机拟合出结果:
在这里插入图片描述
所以通过扩展感知机的层数,引入更多层的神经元(多层感知机MLP的由来),从而带来更多可以训练的参数,得到一种非线性模型,以达到拟合出预期的效果:
在这里插入图片描述
加入一层隐层网络之后,同或数据集就变得可以拟合了:

a 1 [ 1 ] = s i g m o i d ( ω 1 , 1 [ 1 ] ⋅ x 1 + ω 2 , 1 [ 1 ] ⋅ x 2 + b 1 [ 1 ] ) a_1^{[1]}=sigmoid(\omega_{1,1}^{[1]}·x_1+\omega_{2,1}^{[1]}·x_2+b_1^{[1]}) a1[1]=sigmoid(ω1,1[1]x1+ω2,1[1]x2+b1[1])

a 2 [ 1 ] = s i g m o i d ( ω 2 , 1 [ 1 ] ⋅ x 1 + ω 2 , 2 [ 1 ] ⋅ x 2 + b 2 [ 1 ] ) a_2^{[1]}=sigmoid(\omega_{2,1}^{[1]}·x_1+\omega_{2,2}^{[1]}·x_2+b_2^{[1]}) a2[1]=sigmoid(ω2,1[1]x1+ω2,2[1]x2+b2[1])

a 1 [ 2 ] = s i g m o i d ( ω 1 , 1 [ 2 ] ⋅ a 1 [ 1 ] + ω 2 , 1 [ 2 ] ⋅ a 2 [ 1 ] + b [ 2 ] ) a_1^{[2]}=sigmoid(\omega_{1,1}^{[2]}·a_1^{[1]}+\omega_{2,1}^{[2]}·a_2^{[1]}+b^{[2]}) a1[2]=sigmoid(ω1,1[2]a1[1]+ω2,1[2]a2[1]+b[2])【逻辑值】

上标 [ i ] ^{[i]} [i]代表第几层;
在这里插入图片描述

Step2. 超平面 ω T ⋅ x + b = 0 \omega^{T}·x+b=0 ωTx+b=0 or ω T ⋅ x = b \omega^{T}·x=b ωTx=b

初学者第一次见到 ω T ⋅ x + b = 0 \omega^{T}·x+b=0 ωTx+b=0这个表达式时,会觉得它非常像线性函数, ω T ⋅ x + b = 0 \omega^{T}·x+b=0 ωTx+b=0为什么是一条斜线呢?实际上这只是为了在二维平面更好表示其线性分类效果;
在这里插入图片描述
在三维空间中,分类效果是这样:
在这里插入图片描述
投影在 XOZ/YOZ 轴平面就是二维平面中所看到的效果。

在高等数学中我们学习过三维平面的一般表达式: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

( A , B , C ) (A, B, C) (A,B,C)为平面的法向量,亦可写为点法式: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0

( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0)是平面上的一个点,将点法式拆开: A x + B y + C z = A x 0 + B y 0 + C z 0 Ax+By+Cz=Ax_0+By_0+Cz_0 Ax+By+Cz=Ax0+By0+Cz0

这里的 A x 0 + B y 0 + C z 0 Ax_0+By_0+Cz_0 Ax0+By0+Cz0就是一般式中的 D D D.

当扩展至N维超平面时,式子就变成了: A ( x 1 − x 0 ) + B ( x 2 − x 0 ) + C ( x 3 − x 0 ) + . . . + N ( x n − x 0 ) = 0 A(x_1-x_0)+B(x_2-x_0)+C(x_3-x_0)+...+N(x_n-x_0)=0 A(x1x0)+B(x2x0)+C(x3x0)+...+N(xnx0)=0

A x 1 + B x 2 + C x 3 + . . . N x n = A x 0 + B x 0 + C x 0 + . . . N x 0 Ax_1+Bx_2+Cx_3+...Nx_n=Ax_0+Bx_0+Cx_0+...Nx_0 Ax1+Bx2+Cx3+...Nxn=Ax0+Bx0+Cx0+...Nx0

改写成向量相乘的形式:

令行向量 ω T = [ ω 1 , ω 2 , . . . , ω n ] = [ A , B , . . . , N ] \omega^T = [\omega_1, \omega_2,...,\omega_n]=[A, B,..., N] ωT=[ω1,ω2,...,ωn]=[A,B,...,N]

列向量 x = [ x 1 , x 2 , . . . , x n ] ′ x = [x_1, x_2, ... ,x_n]' x=[x1,x2,...,xn] b = A x 0 + B x 0 + C x 0 + . . . N x 0 b = Ax_0+Bx_0+Cx_0+...Nx_0 b=Ax0+Bx0+Cx0+...Nx0

则N维超平面的定义式: ω T ⋅ x = b \omega^{T}·x=b ωTx=b 就产生了, b b b为超平面的常数项截距, ω T \omega^{T} ωT是超平面的法向量。

感知机函数

Step1中我们见过了感知机加激活函数得到与门的效果:
在这里插入图片描述
感知机函数可以表示为: S i g m o i d ( ω T x + b ) Sigmoid(\omega^{T}x+b) Sigmoid(ωTx+b)

S i g m o i d ( ω T ⋅ x + b ) = { 1 , ω T x + b ≥ 0 0 , ω T x + b < 0 Sigmoid(\omega^{T}·x+b) = \begin{cases} 1, \qquad \omega^{T}x+b≥0\\ 0,\qquad \omega^{T}x+b<0\end{cases} Sigmoid(ωTx+b)={1,ωTx+b00,ωTx+b<0

S i g n ( ω T ⋅ x + b ) = { + 1 , ω T x + b ≥ 0 − 1 , ω T x + b < 0 Sign(\omega^{T}·x+b) = \begin{cases} +1, \qquad \omega^{T}x+b≥0\\ -1,\qquad \omega^{T}x+b<0\end{cases} Sign(ωTx+b)={+1,ωTx+b01,ωTx+b<0

我们现在采用 S i g n Sign Sign 符号函数作为激活函数,利用超平面 ω T x + b = 0 \omega^{T}x+b=0 ωTx+b=0 进行决策分类任务,并定义输出标签 y = + 1 y=+1 y=+1 时为“是”, y = − 1 y=-1 y=1 时为“否”;

则分类出现错误时必定会有 y ⋅ ( ω T x + b ) < 0 y·(\omega^{T}x+b)<0 y(ωTx+b)<0.

因此,我们定义损失函数: L ( ω , b ) = − ∑ i = 1 n y i ⋅ ( ω i T x + b ) \mathcal{L}(\omega,b)=-\sum_{i=1}^{n}y_i·(\omega^{T}_ix+b) L(ω,b)=i=1nyi(ωiTx+b)

实际上损失函数的定义也并非这么直截了当就得出,因为还要保证损失函数连续可导,才能对其求偏导进行 a r g m i n ( ω , b ) argmin(\omega, b) argmin(ω,b);极小化损失函数的过程不是一次使得所有误分类点的梯度下降,而是一次随机选取一个误分类点使其梯度下降,而损失函数中 y i ⋅ ( ω i T x + b ) y_i·(\omega^{T}_ix+b) yi(ωiTx+b)的由来,其实就是选取了误分类点到超平面距离公式中的分子项,分母项是个L2范数只起到了缩放作用,不影响损失函数的优化,所以可以忽略不计。
具体推导过程可以参考:感知机w·x+b=0怎么理解?数学推导是什么样的?

我们的目标就是想让损失函数尽可能地小,并选取使得损失函数最小的 w w w b b b.

利用经典的随机梯度下降(SGD)算法对损失函数进行优化训练:

{ ∂ L ∂ ω = L ( ω , b ) = − ∑ i = 1 n y i ⋅ x ∂ L ∂ b = L ( ω , b ) = − ∑ i = 1 n y i \begin{cases}\frac{\partial{L}}{\partial{\omega}}=\mathcal{L}(\omega,b)=-\sum_{i=1}^{n}y_i·x\\\frac{\partial{L}}{\partial{b}}=\mathcal{L}(\omega,b)=-\sum_{i=1}^{n}y_i\end{cases} {ωL=L(ω,b)=i=1nyixbL=L(ω,b)=i=1nyi

{ ω = ω + α ∂ L ∂ ω b = b + α ∂ L ∂ b \begin{cases}\omega = \omega + \alpha\frac{\partial{L}}{\partial{\omega}}\\ b = b + \alpha\frac{\partial{L}}{\partial{b}}\end{cases} {ω=ω+αωLb=b+αbL

利用感知机进行线性分类的训练过程如上,这也是支持向量机(SVM)算法的雏形。

Step3. 利用感知机进行决策分类的训练过程 -【Matlab代码】

clc,clear,close all;
%% 定义变量
n = 50;        % 正负样本的个数,总样本数为2n
r = 0.5;       % 学习率
m = 2;         % 样本的维数
i_max = 100;  % 最大迭代次数%% 生成样本(以二维为例)
pix = linspace(-pi,pi,n);
randx = 2*pix.*rand(1,n) - pi;
x1 = [cos(randx) + 2*rand(1,n); 3+sin(randx) + 2*rand(1,n)];
x2 = [3+cos(randx) + 2*rand(1,n); sin(randx) + 2*rand(1,n)];
x = [x1'; x2'];  % 一共2n个点
y = [ones(n,1); -ones(n,1)];  %添加标签
figure(1)
hold on; 
plot(x1(1,:),x1(2,:),'rx'); 
plot(x2(1,:),x2(2,:),'go'); %% 训练感知机
x = [ones(2*n,1) x];    % 增加一个常数偏置项 [1, x1;x2]
w = zeros(1,m+1);       % 初始化权值 [w0, w1, w2]
flag = true;            % 退出循环的标志,为true时退出循环
for i=1:i_max for j=1:2*n if sign(x(j,:)*w') ~= y(j)  % 超平面加激活函数:sign(w'x+w0)disp(num2str(sign(x(j,:)*w')))disp(y(j))flag = false; w = w + r*y(j)*x(j,:);  % 利用SGD算法更新参数% beginpause(0.3);cla('reset');axis([-1,6,-1,6]);hold onplot(x1(1,:),x1(2,:),'rx'); plot(x2(1,:),x2(2,:),'go');x_test = linspace(0,5,20); y_test = -w(2)/w(3).*x_test-w(1)/w(3); plot(x_test,y_test,'m-.');% endM=getframe(gcf);nn=frame2im(M);[nn,cm]=rgb2ind(nn,256);if i==1imwrite(nn,cm,'out.gif','gif','LoopCount',inf,'DelayTime',0.1);elseimwrite(nn,cm,'out.gif','gif','WriteMode','append','DelayTime',0.5)endend end if flagdisp(num2str(sign(x(j,:)*w')))disp(y(j))break; end 
end
disp(num2str(sign(x(j,:)*w')))
disp(y(j))%% 画分割线
cla('reset');
hold on
axis([-1,6,-1,6]);
plot(x1(1,:),x1(2,:),'rx'); 
plot(x2(1,:),x2(2,:),'go');
x_test = linspace(0,5,20); 
y_test = -w(2)/w(3).*x_test-w(1)/w(3);  
plot(x_test,y_test,'linewidth',2);
legend('标签为正的样本','标签为负的样本','分类超平面');
M=getframe(gcf);
nn=frame2im(M);
[nn,cm]=rgb2ind(nn,256);
imwrite(nn,cm,'out.gif','gif','WriteMode','append','DelayTime',0.5)

程序中的超平面就是一条二维直线: ω 1 + ω 2 x 1 + ω 3 x 2 = 0 \omega_1+\omega_2x_1+\omega_3x_2=0 ω1+ω2x1+ω3x2=0

训练出的超平面纵坐标 y t e s t = x 2 = − ω 1 / ω 3 − ω 2 x 1 / ω 3 y_{test}=x_2=-\omega_1/\omega_3-\omega_2x_1/\omega_3 ytest=x2=ω1/ω3ω2x1/ω3.

在这里插入图片描述

打印观察 S i g n ( ω T ⋅ x + b ) Sign(\omega^{T}·x+b) Sign(ωTx+b)和标签 y y y的值:

disp(num2str(sign(x(j,:)*w')))disp(y(j))
011-1-111-1-111-1-111-1-111-1-111-1-111-1-111-1-1-1

可以看到当 S i g n ( ω T ⋅ x + b ) = = y Sign(\omega^{T}·x+b)==y Sign(ωTx+b)==y的时候终止迭代循环,得到正确分类结果。

从线性回归到贯序模型

除了感知机,ML入门时我们还会使用线性回归和逻辑回归这类经典统计分析方法。线性回归就是想要通过数据,训练出一个符合数据变化规律的超平面(二维中的超平面就是一条直线,三维中的超平面是一个平面)进行未来数据的预测。
正是因为实际问题中的数据可能是复杂多变的,所以仅靠线性的超平面不一定能得到最好的拟合效果,所以可以通过添加其他的网络结构,添加非线性的隐藏层来实现具有更复杂拟合能力的网络结构。
在这里插入图片描述

而所谓的贯序模型就是将自定义的不同层网络(可以是线性层,激活函数层,卷积层、池化层、循环层、注意力层等等)串成一个模型。

# 添加激活层后的贯序模型
seq_model = nn.Sequential(OrderedDict([('input_linear', nn.Linear(1, 12)),('hidden_activation', nn.Tanh()),('output_linear', nn.Linear(12, 1))
]))

该模型的网络结构包括:
输入层:第一层是一个线性层 (nn.Linear(1, 12)),它将接受一个维度为1的输入。
隐藏层:包含一个激活函数层 (nn.Tanh())。该隐藏层不改变维度,仅应用激活函数。
输出层:包含一个线性层 (nn.Linear(12, 1)),将隐藏层的输出维度(12)投影到一个维度为1的输出。
因此,该模型总共有三层:输入层、隐藏层和输出层。输入层的维度为1,输出层的维度为1。

nn.Linear(_, _)

nn.Linear 是 PyTorch 中的一个类,也可以理解为一个函数,用于定义一个线性变换(也称为全连接层或仿射变换),将输入特征映射到输出特征。它是神经网络模块 nn 提供的一个常用函数之一。

nn.Linear(in_features, out_features)中的第一个参数为in_features: 输入特征的数量(维度)。这个参数决定了输入的大小,通常也就是数据集中的特征数,即输入张量的最后一维大小;

nn.Linear(in_features, out_features)中的第二个参数为out_features: 输出特征的数量(维度)。这个参数决定了输出的大小,即输出张量的最后一维大小。

bias: 是否在变换中使用偏置项(偏置向量)。默认为 True,表示会使用偏置项;设置为 False 则不使用偏置项。
前向传播计算: 在神经网络的前向传播过程中,nn.Linear 定义的线性变换会对输入特征进行矩阵乘积运算,然后加上偏置项。具体计算公式如下:

output = input × weight ⊤ + bias \text{output} = \text{input} \times \text{weight}^{\top} + \text{bias} output=input×weight+bias

其中,in_features是需要严格按照数据集中需要训练的特征数确定的,如波士顿房价数据集中:

0-505就是数据集的batch_size,batch_size表示一次选多少行数据进行训练,而crim, age, tax…这类的特征一共14个特征数量,就是nn.Linear中的in_features了,当然大小也是根据你需要哪几个特征参与训练确定的。

在这里插入图片描述
nn,Linear线性层计算的输入和输出格式:

在这里插入图片描述

相比in_features, out_features 就灵活多变一些。如果 out_features 设置得太大,模型可能会过于复杂,导致过拟合问题。相反,如果设置得太小,模型可能无法捕捉足够的特征,导致欠拟合问题。选择适当的输出特征数量是在训练集和验证集上达到良好性能的关键之一。

nn.Linear 在神经网络中非常常见,它可以用于构建模型的一层或多层,实现从输入到输出的特征变换。通过多层的堆叠和非线性激活函数的引入,可以构建出更复杂的神经网络模型,适用于各种任务。

模型训练

在pytorch中我们通过定义一个training_loop来指定模型训练时的迭代次数,所选优化方法,调用创建的网络模型,以及选取的损失函数、训练集/验证集:

def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val,t_c_train, t_c_val):for epoch in range(1, n_epochs + 1):t_p_train = model(t_u_train)loss_train = loss_fn(t_p_train, t_c_train)t_p_val = model(t_u_val)loss_val = loss_fn(t_p_val, t_c_val)optimizer.zero_grad()   # 清除旧梯度loss_train.backward()   # 后向传播计算新梯度optimizer.step()        # 根据梯度进行SGD优化if epoch == 1 or epoch % 500 == 0:print(f"Epoch {epoch}, Training loss {loss_train.item():.4f},"f" Validation loss {loss_val.item():.4f}")def loss_fn(t_p, t_c):squared_diffs = (t_p - t_c) ** 2return squared_diffs.mean()linear_model = nn.Linear(1, 1)
optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)# 尝试线性模型训练
training_loop(n_epochs=3000,optimizer=optimizer,model=linear_model,# loss_fn=loss_fn,loss_fn=nn.MSELoss(),t_u_train=t_un_train,t_u_val=t_un_val,t_c_train=t_c_train,t_c_val=t_c_val)

贯序模型例程 -【Pytorch完整代码】

import torch
import torch.optim as optim
import torch.nn as nn
from collections import OrderedDict
from matplotlib import pyplot as plttorch.set_printoptions(edgeitems=2, linewidth=75)# 数据集准备
t_c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c).unsqueeze(1)
t_u = torch.tensor(t_u).unsqueeze(1)n_samples = t_u.shape[0]  # 获取数据集的样本数量(数据集中元素的数量)
n_val = int(0.2 * n_samples)  # 计算验证集的样本数量。这里使用了0.2作为验证集的比例,将数据集中的20%作为验证集# 生成一个长度为n_samples的随机排列的索引数组。这里使用torch.rand-perm函数生成一个随机排列的整数数组,用于打乱原始数据集的索引顺序
shuffled_indices = torch.randperm(n_samples)
train_indices = shuffled_indices[:-n_val]
val_indices = shuffled_indices[-n_val:]
t_u_train = t_u[train_indices]
t_c_train = t_c[train_indices]
t_u_val = t_u[val_indices]
t_c_val = t_c[val_indices]
t_un_train = 0.1 * t_u_train
t_un_val = 0.1 * t_u_vallinear_model = nn.Linear(1, 1)
linear_model(t_un_val)def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val,t_c_train, t_c_val):for epoch in range(1, n_epochs + 1):t_p_train = model(t_u_train)loss_train = loss_fn(t_p_train, t_c_train)t_p_val = model(t_u_val)loss_val = loss_fn(t_p_val, t_c_val)optimizer.zero_grad()   # 清除旧梯度loss_train.backward()   # 后向传播计算新梯度optimizer.step()        # 根据梯度进行SGD优化if epoch == 1 or epoch % 500 == 0:print(f"Epoch {epoch}, Training loss {loss_train.item():.4f},"f" Validation loss {loss_val.item():.4f}")def loss_fn(t_p, t_c):squared_diffs = (t_p - t_c) ** 2return squared_diffs.mean()linear_model = nn.Linear(1, 1)
optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)# 尝试线性模型训练
training_loop(n_epochs=3000,optimizer=optimizer,model=linear_model,# loss_fn=loss_fn,loss_fn=nn.MSELoss(),t_u_train=t_un_train,t_u_val=t_un_val,t_c_train=t_c_train,t_c_val=t_c_val)print()
print(linear_model.weight)
print(linear_model.bias)# 添加激活层后的贯序模型
seq_model = nn.Sequential(OrderedDict([('input_linear', nn.Linear(1, 12)),('hidden_activation', nn.Tanh()),('output_linear', nn.Linear(12, 1))
]))print(seq_model)
print([param.shape for param in seq_model.parameters()])for name, param in seq_model.named_parameters():print(name, param.shape)optimizer = optim.SGD(seq_model.parameters(), lr=1e-3)training_loop(n_epochs=5000,optimizer=optimizer,model=seq_model,        # 使用贯序模型重新训练loss_fn=nn.MSELoss(),t_u_train=t_un_train,t_u_val=t_un_val,t_c_train=t_c_train,t_c_val=t_c_val)# 打印模型参数训练结果:
# print('output', seq_model(t_un_val))
# print('answer', t_c_val)
# print('hidden', seq_model.hidden_linear.weight.grad)t_range = torch.arange(20., 90.).unsqueeze(1)fig = plt.figure(dpi=100)
plt.xlabel("Fahrenheit")
plt.ylabel("Celsius")
plt.plot(t_u.numpy(), t_c.numpy(), 'o')
plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')
plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')
plt.show()

打印结果:

Epoch 1, Training loss 287.7947, Validation loss 243.3686
Epoch 500, Training loss 6.3782, Validation loss 5.3946
Epoch 1000, Training loss 2.9283, Validation loss 6.1271
Epoch 1500, Training loss 2.4918, Validation loss 6.4090
Epoch 2000, Training loss 2.4366, Validation loss 6.5120
Epoch 2500, Training loss 2.4296, Validation loss 6.5489
Epoch 3000, Training loss 2.4288, Validation loss 6.5621Parameter containing:
tensor([[5.4817]], requires_grad=True)
Parameter containing:
tensor([-17.4273], requires_grad=True)
Sequential((hidden_linear): Linear(in_features=1, out_features=12, bias=True)(hidden_activation): Tanh()(output_linear): Linear(in_features=12, out_features=1, bias=True)
)
[torch.Size([12, 1]), torch.Size([12]), torch.Size([1, 12]), torch.Size([1])]
hidden_linear.weight torch.Size([12, 1])
hidden_linear.bias torch.Size([12])
output_linear.weight torch.Size([1, 12])
output_linear.bias torch.Size([1])
Epoch 1, Training loss 200.8066, Validation loss 149.6482
Epoch 500, Training loss 8.0419, Validation loss 6.9692
Epoch 1000, Training loss 2.8967, Validation loss 9.0610
Epoch 1500, Training loss 1.7860, Validation loss 8.2857
Epoch 2000, Training loss 1.4266, Validation loss 7.6947
Epoch 2500, Training loss 1.3101, Validation loss 7.3714
Epoch 3000, Training loss 1.2710, Validation loss 7.2340
Epoch 3500, Training loss 1.2550, Validation loss 7.2035
Epoch 4000, Training loss 1.2451, Validation loss 7.2175
Epoch 4500, Training loss 1.2367, Validation loss 7.2404
Epoch 5000, Training loss 1.2289, Validation loss 7.2637

这个例子中虽然采用的输入层和输出层都是线性层nn.Linear,但是最终拟合出的却是曲线,而非二维的超平面(一条直线),这就是因为隐藏层我们选用了tanh函数,是非线性的,也因此提升了网络的拟合效果:
在这里插入图片描述
如果我们将nn.Tanh()改为nn.Relu()激活函数,拟合出来的就是一条直线了:
在这里插入图片描述

参考文献:
[1] Pytorch官方 - Deep Learning With Pytorch
[2] 《零基础学机器学习》
[3] 感知机 - 谢晋- 算法与数学之美
[4] 感知机w·x+b=0怎么理解?数学推导是什么样的?
[5] 啥都断更的小c-从0开始深度学习:什么是线性层?pytorch中nn.linear怎么用?
[6] 机器学习| 算法笔记-线性回归(Linear Regression)

相关文章:

Deep Learning With Pytorch - 最基本的感知机、贯序模型/分类、拟合

文章目录 如何利用pytorch创建一个简单的网络模型&#xff1f;Step1. 感知机&#xff0c;多层感知机&#xff08;MLP&#xff09;的基本结构Step2. 超平面 ω T ⋅ x b 0 \omega^{T}xb0 ωT⋅xb0 or ω T ⋅ x b \omega^{T}xb ωT⋅xb感知机函数 Step3. 利用感知机进行决策…...

测试工具coverage的高阶使用

在文章Python之单元测试使用的一点心得中&#xff0c;笔者介绍了自己在使用Python测试工具coverge的一点心得&#xff0c;包括&#xff1a; 使用coverage模块计算代码测试覆盖率使用coverage api计算代码测试覆盖率coverage配置文件的使用coverage badge的生成 本文在此基础上…...

安卓监听端口接收消息

文章目录 其他文章监听端口接收消息 建立新线程完整代码 其他文章 下面是我的另一篇文章&#xff0c;是在电脑上发送数据&#xff0c;配合本篇文章&#xff0c;可以实现电脑与手机的局域网通讯。直接复制粘贴就能行&#xff0c;非常滴好用。 点击连接 另外&#xff0c;如果你不…...

「Node」下载安装配置node.js

以下是Node.js的下载、安装和配置的全面教程&#xff1a; 下载 Node.js 打开 Node.js 官方网站&#xff1a;Previous Releases在主页上&#xff0c;您会看到两个版本可供选择&#xff1a;LTS&#xff08;长期支持版本&#xff09;和最新版&#xff08;Current&#xff09;。如…...

NOIP2014普及组,提高组 比例简化 飞扬的小鸟 答案

比例简化 说明 在社交媒体上&#xff0c;经常会看到针对某一个观点同意与否的民意调查以及结果。例如&#xff0c;对某一观点表示支持的有1498 人&#xff0c;反对的有 902人&#xff0c;那么赞同与反对的比例可以简单的记为1498:902。 不过&#xff0c;如果把调查结果就以这种…...

【Java】使用Apache POI识别PPT中的图片和文字,以及对应的大小、坐标、颜色、字体等

本文介绍如何使用Apache POI识别PPT中的图片和文字&#xff0c;获取图片的数据、大小、尺寸、坐标&#xff0c;以及获取文字的字体、大小、颜色、坐标。 官方文档&#xff1a;https://poi.apache.org/components/slideshow/xslf-cookbook.html 官方文档和网上的资料介绍的很少…...

根据源码,模拟实现 RabbitMQ - 实现消息持久化,统一硬盘操作(3)

目录 一、实现消息持久化 1.1、消息的存储设定 1.1.1、存储方式 1.1.2、存储格式约定 1.1.3、queue_data.txt 文件内容 1.1.4、queue_stat.txt 文件内容 1.2、实现 MessageFileManager 类 1.2.1、设计目录结构和文件格式 1.2.2、实现消息的写入 1.2.3、实现消息的删除…...

找到所有数组中消失的数(C语言详解)

题目&#xff1a;找到所有数组中消失的数 题目详情&#xff1a; 给你一个含 n 个整数的数组 nums &#xff0c;其中 nums[i] 在区间 [1,n] 内。请你找出所以在 [1,n] 范围内但没有出现在 nums 中的数字&#xff0c;并以数组的形式返回结果。 示例1&#xff1a; 输入&#xf…...

计算机毕设项目之基于django+mysql的疫情实时监控大屏系统(前后全分离)

系统阐述的是一款新冠肺炎疫情实时监控系统的设计与实现&#xff0c;对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计&#xff0c;描述&#xff0c;实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体…...

Unity UI内存泄漏优化

项目一运行&#xff0c;占用的内存越来越多&#xff0c;不会释放&#xff0c;导致GC越来越频繁&#xff0c;越来越慢&#xff0c;这些都是为什么呢&#xff0c;今天从UI方面谈起。 首先让我们来聊聊什么是内存泄漏呢&#xff1f; 一般来讲内存泄漏就是指我们的应用向内存申请…...

学习笔记:Opencv实现图像特征提取算法SIFT

2023.8.19 为了在暑假内实现深度学习的进阶学习&#xff0c;特意学习一下传统算法&#xff0c;分享学习心得&#xff0c;记录学习日常 SIFT的百科&#xff1a; SIFT Scale Invariant Feature Transform, 尺度不变特征转换 全网最详细SIFT算法原理实现_ssift算法_Tc.小浩的博客…...

【golang】接口类型(interface)使用和原理

接口类型的类型字面量与结构体类型的看起来有些相似&#xff0c;它们都用花括号包裹一些核心信息。只不过&#xff0c;结构体类型包裹的是它的字段声明&#xff0c;而接口类型包裹的是它的方法定义。 接口类型声明中的这些方法所代表的就是该接口的方法集合。一个接口的方法集…...

【Linux操作系统】Linux系统编程中的共享存储映射(mmap)

在Linux系统编程中&#xff0c;进程之间的通信是一项重要的任务。共享存储映射&#xff08;mmap&#xff09;是一种高效的进程通信方式&#xff0c;它允许多个进程共享同一个内存区域&#xff0c;从而实现数据的共享和通信。本文将介绍共享存储映射的概念、原理、使用方法和注意…...

2235.两整数相加:19种语言解法(力扣全解法)

【LetMeFly】2235.两整数相加&#xff1a;19种语言解法&#xff08;力扣全解法&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/add-two-integers/ 给你两个整数 num1 和 num2&#xff0c;返回这两个整数的和。 示例 1&#xff1a; 输入&#xff1a;num…...

中国剩余定理及扩展

目录 中国剩余定理解释 中国剩余定理扩展——求解模数不互质情况下的线性方程组&#xff1a; 代码实现&#xff1a; 互质&#xff1a; 非互质&#xff1a; 中国剩余定理解释 在《孙子算经》中有这样一个问题&#xff1a;“今有物不知其数&#xff0c;三三数之剩二&#x…...

数据在内存中的存储(deeper)

数据在内存中的存储&#xff08;deeper&#xff09; 一.数据类型的详细介绍二.整形在内存中的存储三.浮点型在内存中的存储 一.数据类型的详细介绍 类型的意义&#xff1a; 使用这个类型开辟内存空间的大小&#xff08;大小决定了使用范围&#xff09;如何看待内存空间的视角…...

算法修炼Day52|● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组

LeetCode:300.最长递增子序列 300. 最长递增子序列 - 力扣&#xff08;LeetCode&#xff09; 1.思路 dp[i]的状态表示以nums[i]为结尾的最长递增子序列的个数。 dp[i]有很多个&#xff0c;选择其中最大的dp[i]Math.max(dp[j]1,dp[i]) 2.代码实现 1class Solution {2 pub…...

使用 HTML、CSS 和 JavaScript 创建实时 Web 编辑器

使用 HTML、CSS 和 JavaScript 创建实时 Web 编辑器 在本文中&#xff0c;我们将创建一个实时网页编辑器。这是一个 Web 应用程序&#xff0c;允许我们在网页上编写 HTML、CSS 和 JavaScript 代码并实时查看结果。这是学习 Web 开发和测试代码片段的绝佳工具。我们将使用ifram…...

百望云联合华为发布票财税链一体化数智解决方案 赋能企业数字化升级

随着数据跃升为数字经济关键生产要素&#xff0c;数据安全成为整个数字化建设的重中之重。为更好地帮助企业发展&#xff0c;中央及全国和地方政府相继出台了多部与数据相关的政策法规&#xff0c;鼓励各领域服务商提供具有自主创新的软件产品与服务&#xff0c;帮助企业在合规…...

实现两个栈模拟队列

实现两个栈模拟队列 思路&#xff1a;可以想象一下左手和右手&#xff0c;两个栈&#xff1a;stack1&#xff08;数据所在的栈&#xff09; &#xff0c;stack2&#xff08;临时存放&#xff09;。 入队&#xff1a;需要将入队 num 加在 stack1 的栈顶即可&#xff1b; 出队&am…...

无涯教程-TensorFlow - 单词嵌入

Word embedding是从离散对象(如单词)映射到向量和实数的概念&#xff0c;可将离散的输入对象有效地转换为有用的向量。 Word embedding的输入如下所示: blue: (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259) blues: (0.01396, 0.11887, -0.48963, ..., 0.03…...

Facebook AI mBART:巴别塔的硅解

2018年&#xff0c;谷歌发布了BERT&#xff08;来自transformers的双向编码器表示&#xff09;&#xff0c;这是一种预训练的语言模型&#xff0c;在一系列自然语言处理&#xff08;NLP&#xff09;任务中对SOTA结果进行评分&#xff0c;并彻底改变了研究领域。类似的基于变压器…...

BDA初级分析——SQL清洗和整理数据

一、数据处理 数据处理之类型转换 字符格式与数值格式存储的数据&#xff0c;同样是进行大小排序&#xff0c; 会有什么区别&#xff1f; 以rev为例&#xff0c;看看字符格式与数值格式存储时&#xff0c;排序会有什么区别&#xff1f; 用cast as转换为字符后进行排序 SEL…...

汽车后视镜反射率测定仪

后视镜是驾驶员坐在驾驶室座位上直接获取汽车后方、侧方和下方等外部信息的工具。它起着“第三只眼睛”的作用。后视镜按安装位置划分通常分为车外后视镜、监视镜和内后视镜。外后视镜观察汽车后侧方监视镜观察汽车前下方内后视镜观察汽车后方及车内情况。用途不一样镜面结构也…...

Redis学习笔记

redis相关内容 默认端口6379 默认16个数据库&#xff0c;初始默认使用0号库 使用select 切换数据库 统一密码管理&#xff0c;所有库密码相同 dbsize&#xff1a;查看当前库key的数量 flushdb&#xff1a;清空当前库 flushall&#xff1a;清空全部库 redis是单线程 多路…...

韩顺平Linux 四十四--

四十四、rwx权限 权限的基本介绍 输入指令 ls -l 显示的内容如下 -rwxrw-r-- 1 root 1213 Feb 2 09:39 abc0-9位说明 第0位确定文件类型&#xff08;d , - , l , c , b) l 是链接&#xff0c;相当于 windows 的快捷方式- 代表是文件是普通文件d 是目录&#xff0c;相…...

【支付宝小程序】分包优化教程

&#x1f996;我是Sam9029&#xff0c;一个前端 Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-JS学习,CSS学习,Vue-2领域博主 &#x1f431;‍&#x1f409;&#x1f431;‍&#x1f409;恭喜你&#xff0c;若此文你认为写的不错&#xff0c;不要吝啬你的赞扬&#xff0c;求收…...

语言基础2 矩阵和数组

语言基础2 矩阵和数组 矩阵和数组是matlab中信息和数据的基本表示形式 可以创建常用的数组和网格 合并现有的数组 操作数组的形状和内容 以及使用索引访问数组元素 用到的函数列表如下 一 创建 串联和扩展矩阵 矩阵时按行和列排列的数据元素的二维数据元素的二维矩…...

springMVC中过滤器抛出异常,自定义异常捕获

在过滤器中引入org.springframework.web.servlet.HandlerExceptionResolver AutowiredQualifier("handlerExceptionResolver")private HandlerExceptionResolver resolver; // doFilter中处理if (条件1) {if (条件2) {resolver.resolveException(request, response, …...

图像检索技术研究:深度度量与深度散列在相似性学习中的应用比较与实践 - 使用Python与Jupyter环境

引言 在计算机视觉领域&#xff0c;图像检索是一个长期存在并持续受到研究者关注的重要话题。随着大数据时代的到来&#xff0c;如何高效、准确地从海量数据中检索到相似的图像成为一个巨大的挑战。传统的检索方法在大数据环境下表现不佳&#xff0c;而深度学习技术的崛起为图…...

CSS加载失败的6个原因

有很多刚刚接触 CSS 的新手有时会遇到 CSS 加载失败这个问题&#xff0c;但测试时&#xff0c;网页上没有显示该样式的问题&#xff0c;这就说明 CSS 加载失败了。出现这种状况一般是因为的 CSS 路径书写错&#xff0c;或者是在浏览器中禁止掉了 CSS 的加载&#xff0c;可以重新…...

react之路由的安装与使用

一、路由安装 路由官网2021.11月初&#xff0c;react-router 更新到 v6 版本。使用最广泛的 v5 版本的使用 npm i react-router-dom5.3.0二、路由使用 2.1 路由的简单使用 第一步 在根目录下 创建 views 文件夹 ,用于放置路由页面 films.js示例代码 export default functio…...

基于RoCE的应用程序的MTU注意事项

目录 基于RoCE的应用程序的MTU注意事项 探测网络中的MTU设置 概要 原文 MTU测试结果 DOC: CentOS安装tshark抓包工具 基于RoCE的应用程序的MTU注意事项 原文&#xff1a;https://support.mellanox.com/s/article/MLNX2-117-1682kn InfiniBand协议最大传输单元&#xff…...

springboot集成Graphql相关问题汇总

1、idea在debug运行时出现java.lang.NoClassDefFoundError:kotlin/collections/AbstractMutableMap 解决&#xff1a;禁用idea dubugger中kotlin coroutine agent 见&#xff1a;https://stackoverflow.com/questions/70796177/after-the-spring-boot-source-code-is-compile…...

Angular16的路由守卫基础使用

Angular16的路由守卫基础使用 使用ng generate guard /guard/login命令生成guard文件因新版Angular取消了CanActivate的使用&#xff0c;改用CanActivateFn&#xff0c;因此使用router跳转需要通过inject的方式导入。 import { inject } from angular/core; import { CanActi…...

leetcode228. 汇总区间

题目 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说&#xff0c;nums 的每个元素都恰好被某个区间范围所覆盖&#xff0c;并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区间范围 [a,b]…...

删除有序链表中重复的元素-II(链表)

乌&#xff01;蒙&#xff01;山&#xff01;连&#xff01;着&#xff01;山&#xff01;外&#xff01;山&#xff01; 题目&#xff1a; 思路&#xff1a; 双指针&#xff0c;slow和fast&#xff0c;并且增加标记flag初始为1。 如果slow指向节点值等于fast指向节点值&…...

element单独检验form表单中的一项

<el-form-item prop"limitDays" style"margin-left: 5px;"><el-input v-model"ruleForm.limitDays" placeholder"天数" style"width: 100px;" /> </el-form-item> <el-form-item prop"limitCount…...

Webpack node、output.jsonpFunction 配置详解

Webpack node、output.jsonpFunction 配置详解 最近尝试给一些用到 webpack 的项目升级到最新 webpack5 版本&#xff0c;其中遇到了一些问题&#xff0c;我挑了两个比较典型的问题&#xff0c;其中主要涉及到了 webpack 的 node 属性跟 output.jsonpFunction &#xff08;web…...

要跟静音开关说再见了!iPhone15新变革,Action按钮引领方向

有很多传言称iPhone 15 Pro会有很多变化&#xff0c;但其中一个变化可能意味着iPhone体验从第一天起就有的一项功能的终结。我说的是静音开关&#xff0c;它可以让你轻松地打开或关闭iPhone的铃声。 根据越来越多的传言&#xff0c;iPhone 15 Pro和iPhone 15 Pro Max将拆除静音…...

论文笔记 Graph Attention Networks

2018 ICLR 1 intro 1.1. GCN的不足 无法完成inductive任务 inductive任务是指&#xff1a; 训练阶段与测试阶段需要处理的graph不同。通常是训练阶段只是在子图上进行&#xff0c;测试阶段需要处理未知的顶点。GGN 的参数依赖于邻接矩阵A/拉普拉斯矩阵L&#xff0c;所以换了…...

看上去就很像的agree和degree有什么联系

“Agree”&#xff08;同意&#xff09;和 “degree”&#xff08;程度&#xff09;这两个词在语义上没有直接的联系&#xff0c;它们代表不同的概念。 “Agree” 意味着在意见、观点或立场上达成共识或一致。它表示同意或同意某人或某事。 例如&#xff1a; “We all agree…...

2023前端面试题第二弹(真实,一般人我还不给看)

为什么要初始化css&#xff1f; 避免浏览器差异&#xff0c;解决兼容问题 网格布局 display: grid; grid-template-columns: 1fr 1fr 1fr less的优点 可以兼容&#xff0c;可以嵌套&#xff0c;循环&#xff0c;运算&#xff0c;定义变量和继承样式&#xff08;extend&#xff…...

零基础如何学习 Web 安全,如何让普通人快速入门网络安全?

前言 网络安全现在是朝阳行业&#xff0c;缺口是很大。不过网络安全行业就是需要技术很多的人达不到企业要求才导致人才缺口大 【一一帮助安全学习&#xff08;网络安全面试题学习路线视频教程工具&#xff09;一一】 初级的现在有很多的运维人员转网络安全&#xff0c;初级…...

安全学习DAY18_信息打点-APP资产搜集

信息打点-APP资产&静态提取&动态抓包&动态调试 文章目录 信息打点-APP资产&静态提取&动态抓包&动态调试本节知识&思维导图本节使用到的链接&工具 如何获取目标APP从名称中获取APP从URL获取APP APP搜集资产信息APP提取信息分类信息提取方式信息…...

react 矩形波浪

"矩形波浪"&#xff08;Square Wave&#xff09;在信号处理和波形生成中是一种特殊类型的波形&#xff0c;通常由两个不同的值交替组成&#xff0c;一个是高电平&#xff0c;另一个是低电平&#xff0c;形成类似方波的波形。在 React 中创建一个矩形波浪的效果可以通…...

【GitHub】Pycharm本地项目打包上传到Github仓库的操作步骤

文章目录 1、Pycharm端的设置操作2、Github端的设置操作3、Pycharm上配置Github4、Git本地项目至GitHub仓库5、前往Github中查看确认6、常见报错 1、Pycharm端的设置操作 通过CtrlAltS快捷组合键的方式&#xff0c;打开设置&#xff0c;导航到版本控制一栏中的Git&#xff0c;…...

计算机网络基础

前言 在你立足处深挖下去,就会有泉水涌出!别管蒙昧者们叫嚷:“下边永远是地狱!” 博客主页&#xff1a;KC老衲爱尼姑的博客主页 博主的github&#xff0c;平常所写代码皆在于此 共勉&#xff1a;talk is cheap, show me the code 作者是爪哇岛的新手&#xff0c;水平很有限&…...

【图像分类】基于LIME的CNN 图像分类研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现TSO-SVM金枪鱼群算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基…...