兰州做网站维护的公司/贴吧推广
1、Python中的浅拷贝和深拷贝
import copya = [1, 2, 3, 4, [11, 22, 33, [111, 222]]]
b = a
c = a.copy()
d = copy.deepcopy(a)print('before modify\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
before modify a= [1, 2, 3, 4, [11, 22, 33, [111, 222]]] b = a= [1, 2, 3, 4, [11, 22, 33, [111, 222]]] c = a.copy()= [1, 2, 3, 4, [11, 22, 33, [111, 222]]] d = copy.deepcopy(a) [1, 2, 3, 4, [11, 22, 33, [111, 222]]] | ![]() |
注:图片网址Python Tutor code visualizer: Visualize code in Python, JavaScript, C, C++, and Java
a[0] = 10
print('after a[0] = 10\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
after a[0] = 10 a= [10, 2, 3, 4, [11, 22, 33, [111, 222]]] b = a= [10, 2, 3, 4, [11, 22, 33, [111, 222]]] c = a.copy()= [1, 2, 3, 4, [11, 22, 33, [111, 222]]] d = copy.deepcopy(a) [1, 2, 3, 4, [11, 22, 33, [111, 222]]] | ![]() |
a[4][0] = 100
print('after a[4][0] = 100\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
after a[4][0] = 100 a= [10, 2, 3, 4, [100, 22, 33, [111, 222]]] b = a= [10, 2, 3, 4, [100, 22, 33, [111, 222]]] c = a.copy()= [1, 2, 3, 4, [100, 22, 33, [111, 222]]] d = copy.deepcopy(a) [1, 2, 3, 4, [11, 22, 33, [111, 222]]] | ![]() |
a[4][3][0] = 1000
print('after a[4][3][0] = 1000\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')
after a[4][3][0] = 1000 a= [10, 2, 3, 4, [100, 22, 33, [1000, 222]]] b = a= [10, 2, 3, 4, [100, 22, 33, [1000, 222]]] c = a.copy()= [1, 2, 3, 4, [100, 22, 33, [1000, 222]]] d = copy.deepcopy(a) [1, 2, 3, 4, [11, 22, 33, [111, 222]]] | ![]() |
2、numpy中的浅拷贝和深拷贝
a1 = np.random.randn(2, 3)
b1 = a1
c1 = a1.copy()
d1 = copy.deepcopy(a1)print('before modify\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a1[0] = 10
print('after a1[0] = 10\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')
before modify
a1=
[[ 1.48618757 -0.90409826 2.05529475]
[ 0.14232255 2.93331428 0.88511785]]
b1 = a1=
[[ 1.48618757 -0.90409826 2.05529475]
[ 0.14232255 2.93331428 0.88511785]]
c1 = a1.copy()=
[[ 1.48618757 -0.90409826 2.05529475]
[ 0.14232255 2.93331428 0.88511785]]
d1 = copy.deepcopy(a1)=
[[ 1.48618757 -0.90409826 2.05529475]
[ 0.14232255 2.93331428 0.88511785]]
after a1[0] = 10
a1=
[[10. 10. 10. ]
[ 0.14232255 2.93331428 0.88511785]]
b1 = a1=
[[10. 10. 10. ]
[ 0.14232255 2.93331428 0.88511785]]
c1 = a1.copy()=
[[ 1.48618757 -0.90409826 2.05529475]
[ 0.14232255 2.93331428 0.88511785]]
d1 = copy.deepcopy(a1)=
[[ 1.48618757 -0.90409826 2.05529475]
[ 0.14232255 2.93331428 0.88511785]]
3、pytorch中的浅拷贝和深拷贝
a2 = torch.randn(2, 3)
b2 = torch.Tensor(a2)
bb2 = torch.tensor(a2)
c2 = a2.detach()
cc2 = a2.clone()
ccc2 = a2.clone().detach()
print('before modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
a2[0] = 0
print('after modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
before modify
a2=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
b2 = torch.Tensor(a2)=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
bb2 = torch.tensor(a2)=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
c2 = a2.detach()=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
cc2 = a2.clone()=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
ccc2 = a2.clone().detach()=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
after modify
a2=
tensor([[ 0.0000, 0.0000, 0.0000],
[ 0.8979, -0.4158, 1.1338]])
b2 = torch.Tensor(a2)=
tensor([[ 0.0000, 0.0000, 0.0000],
[ 0.8979, -0.4158, 1.1338]])
bb2 = torch.tensor(a2)=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
c2 = a2.detach()=
tensor([[ 0.0000, 0.0000, 0.0000],
[ 0.8979, -0.4158, 1.1338]])
cc2 = a2.clone()=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
ccc2 = a2.clone().detach()=
tensor([[-0.6472, 1.3437, -0.3386],
[ 0.8979, -0.4158, 1.1338]])
参考
1、B站视频
十分钟!彻底弄懂Python深拷贝与浅拷贝机制_哔哩哔哩_bilibili
11、简书
NumPy之浅拷贝和深拷贝 - 简书 (jianshu.com)
2、CSDN-numpy
numpy copy(无拷贝 浅拷贝、深拷贝)类型说明_genghaihua的博客-CSDN博客
3、CSDN-pytorch
python、pytorch中的常见的浅拷贝、深拷贝问题总结_pytorch tensor的浅、复制_新嬉皮士的博客-CSDN博客
完整代码
import numpy as np
import copy
import torcha = [1, 2, 3, 4, [11, 22, 33, [111, 222]]]
b = a
c = a.copy()
d = copy.deepcopy(a)print('before modify\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[0] = 10
print('after a[0] = 10\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[4][0] = 100
print('after a[4][0] = 100\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a[4][3][0] = 1000
print('after a[4][3][0] = 1000\r\n a=\r\n', a, '\r\n','b = a=\r\n', b, '\r\n','c = a.copy()=\r\n', c, '\r\n','d = copy.deepcopy(a)\r\n', d, '\r\n')a1 = np.random.randn(2, 3)
b1 = a1
c1 = a1.copy()
d1 = copy.deepcopy(a1)print('before modify\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a1[0] = 10
print('after a1[0] = 10\r\n a1=\r\n', a1, '\r\n','b1 = a1=\r\n', b1, '\r\n','c1 = a1.copy()=\r\n', c1, '\r\n','d1 = copy.deepcopy(a1)=\r\n', d1, '\r\n')a2 = torch.randn(2, 3)
b2 = torch.Tensor(a2)
bb2 = torch.tensor(a2)
c2 = a2.detach()
cc2 = a2.clone()
ccc2 = a2.clone().detach()
print('before modify\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
a2[0] = 0
print('after a2[0] = 0\r\n a2=\r\n', a2, '\r\n','b2 = torch.Tensor(a2)=\r\n', b2, '\r\n','bb2 = torch.tensor(a2)=\r\n', bb2, '\r\n','c2 = a2.detach()=\r\n', c2, '\r\n','cc2 = a2.clone()=\r\n', cc2, '\r\n','ccc2 = a2.clone().detach()=\r\n', ccc2)
相关文章:

python、numpy、pytorch中的浅拷贝和深拷贝
1、Python中的浅拷贝和深拷贝 import copya [1, 2, 3, 4, [11, 22, 33, [111, 222]]] b a c a.copy() d copy.deepcopy(a)print(before modify\r\n a\r\n, a, \r\n,b a\r\n, b, \r\n,c a.copy()\r\n, c, \r\n,d copy.deepcopy(a)\r\n, d, \r\n)before modify a [1, 2…...

EasyRecovery14数据恢复软件支持各类存储设备的数据恢复
EasyRecovery14数据恢复软件专业数据恢复软件支持电脑、相机、移动硬盘、U盘、SD卡、内存卡、光盘、本地电子邮件和 RAID 磁盘阵列等各类存储设备的数据恢复。 目前市面上有许多数据恢复软件,但褒贬不一,而且数据恢复软件又不是一款会被经常使用的软件&a…...

玩机搞机----面具模块的组成 制作模块
root面具相信很多玩家都不陌生。早期玩友大都使用第三方卡刷补丁来对系统进行各种修复和添加功能。目前面具补丁代替了这些操作。今天的帖子了解下面具各种模块的组成和几种普遍的代码组成。 Magisk中运行的每个单独的shell脚本都将在内部的BusyBox的shell中执行。对于与第三方…...

注册中心/配置管理 —— SpringCloud Consul
Consul 概述 Consul 是一个可以提供服务发现,健康检查,多数据中心,key/Value 存储的分布式服务框架,用于实现分布式系统的发现与配置。Cousul 使用 Go 语言实现,因此天然具有可移植性,安装包仅包含一个可执…...

Next.js 13 你需要了解的 8 件事
目录 React 服务器组件 (RSC)服务器组件默认开启在 Next.js 中客户端组件也在服务器上呈现!组成客户端和服务器组件编译Next.js 13 渲染模式桶文件有点坏了库集成:WIP 仍在进行中Route groups 路由组总结 在本文中,我们…...

计数排序(Count Sort)算法详解
1. 算法简介 计数排序(Count Sort)是一种非比较排序算法,其核心思想是统计数组中每个元素出现的次数,然后根据统计结果将元素按照顺序放回原数组中。计数排序的时间复杂度为O(nk),其中n是数组的长度,k是数…...

Linux驱动开发(Day3)
驱动点灯:...

使用Vscode调试shell脚本
在vcode中安装bash dug插件 在vcode中添加launch.json配置,默认就好 参考:http://www.rply.cn/news/73966.html 推荐插件: shellman(支持shell,智能提示) shellcheck(shell语法检查) shell-format(shell格式化)...

OpenAI Function calling
开篇 原文出处 最近 OpenAI 在 6 月 13 号发布了新 feature,主要针对模型进行了优化,提供了 function calling 的功能,该 feature 对于很多集成 OpenAI 的应用来说绝对是一个“神器”。 Prompt 的演进 如果初看 OpenAI 官网对function ca…...

【C语言】字符分类函数、字符转换函数、内存函数
前言 之前我们用两篇文章介绍了strlen、strcpy、stract、strcmp、strncpy、strncat、strncmp、strstr、strtok、streeror这些函数 第一篇文章strlen、strcpy、stract 第二篇文章strcmp、strncpy、strncat、strncmp 第三篇文章strstr、strtok、streeror 今天我们就来学习字…...

Deep Learning With Pytorch - 最基本的感知机、贯序模型/分类、拟合
文章目录 如何利用pytorch创建一个简单的网络模型?Step1. 感知机,多层感知机(MLP)的基本结构Step2. 超平面 ω T ⋅ x b 0 \omega^{T}xb0 ωT⋅xb0 or ω T ⋅ x b \omega^{T}xb ωT⋅xb感知机函数 Step3. 利用感知机进行决策…...

测试工具coverage的高阶使用
在文章Python之单元测试使用的一点心得中,笔者介绍了自己在使用Python测试工具coverge的一点心得,包括: 使用coverage模块计算代码测试覆盖率使用coverage api计算代码测试覆盖率coverage配置文件的使用coverage badge的生成 本文在此基础上…...

安卓监听端口接收消息
文章目录 其他文章监听端口接收消息 建立新线程完整代码 其他文章 下面是我的另一篇文章,是在电脑上发送数据,配合本篇文章,可以实现电脑与手机的局域网通讯。直接复制粘贴就能行,非常滴好用。 点击连接 另外,如果你不…...

「Node」下载安装配置node.js
以下是Node.js的下载、安装和配置的全面教程: 下载 Node.js 打开 Node.js 官方网站:Previous Releases在主页上,您会看到两个版本可供选择:LTS(长期支持版本)和最新版(Current)。如…...

NOIP2014普及组,提高组 比例简化 飞扬的小鸟 答案
比例简化 说明 在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果。例如,对某一观点表示支持的有1498 人,反对的有 902人,那么赞同与反对的比例可以简单的记为1498:902。 不过,如果把调查结果就以这种…...

【Java】使用Apache POI识别PPT中的图片和文字,以及对应的大小、坐标、颜色、字体等
本文介绍如何使用Apache POI识别PPT中的图片和文字,获取图片的数据、大小、尺寸、坐标,以及获取文字的字体、大小、颜色、坐标。 官方文档:https://poi.apache.org/components/slideshow/xslf-cookbook.html 官方文档和网上的资料介绍的很少…...

根据源码,模拟实现 RabbitMQ - 实现消息持久化,统一硬盘操作(3)
目录 一、实现消息持久化 1.1、消息的存储设定 1.1.1、存储方式 1.1.2、存储格式约定 1.1.3、queue_data.txt 文件内容 1.1.4、queue_stat.txt 文件内容 1.2、实现 MessageFileManager 类 1.2.1、设计目录结构和文件格式 1.2.2、实现消息的写入 1.2.3、实现消息的删除…...

找到所有数组中消失的数(C语言详解)
题目:找到所有数组中消失的数 题目详情: 给你一个含 n 个整数的数组 nums ,其中 nums[i] 在区间 [1,n] 内。请你找出所以在 [1,n] 范围内但没有出现在 nums 中的数字,并以数组的形式返回结果。 示例1: 输入…...

计算机毕设项目之基于django+mysql的疫情实时监控大屏系统(前后全分离)
系统阐述的是一款新冠肺炎疫情实时监控系统的设计与实现,对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计,描述,实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体…...

Unity UI内存泄漏优化
项目一运行,占用的内存越来越多,不会释放,导致GC越来越频繁,越来越慢,这些都是为什么呢,今天从UI方面谈起。 首先让我们来聊聊什么是内存泄漏呢? 一般来讲内存泄漏就是指我们的应用向内存申请…...

学习笔记:Opencv实现图像特征提取算法SIFT
2023.8.19 为了在暑假内实现深度学习的进阶学习,特意学习一下传统算法,分享学习心得,记录学习日常 SIFT的百科: SIFT Scale Invariant Feature Transform, 尺度不变特征转换 全网最详细SIFT算法原理实现_ssift算法_Tc.小浩的博客…...

【golang】接口类型(interface)使用和原理
接口类型的类型字面量与结构体类型的看起来有些相似,它们都用花括号包裹一些核心信息。只不过,结构体类型包裹的是它的字段声明,而接口类型包裹的是它的方法定义。 接口类型声明中的这些方法所代表的就是该接口的方法集合。一个接口的方法集…...

【Linux操作系统】Linux系统编程中的共享存储映射(mmap)
在Linux系统编程中,进程之间的通信是一项重要的任务。共享存储映射(mmap)是一种高效的进程通信方式,它允许多个进程共享同一个内存区域,从而实现数据的共享和通信。本文将介绍共享存储映射的概念、原理、使用方法和注意…...

2235.两整数相加:19种语言解法(力扣全解法)
【LetMeFly】2235.两整数相加:19种语言解法(力扣全解法) 力扣题目链接:https://leetcode.cn/problems/add-two-integers/ 给你两个整数 num1 和 num2,返回这两个整数的和。 示例 1: 输入:num…...

中国剩余定理及扩展
目录 中国剩余定理解释 中国剩余定理扩展——求解模数不互质情况下的线性方程组: 代码实现: 互质: 非互质: 中国剩余定理解释 在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二&#x…...

数据在内存中的存储(deeper)
数据在内存中的存储(deeper) 一.数据类型的详细介绍二.整形在内存中的存储三.浮点型在内存中的存储 一.数据类型的详细介绍 类型的意义: 使用这个类型开辟内存空间的大小(大小决定了使用范围)如何看待内存空间的视角…...

算法修炼Day52|● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组
LeetCode:300.最长递增子序列 300. 最长递增子序列 - 力扣(LeetCode) 1.思路 dp[i]的状态表示以nums[i]为结尾的最长递增子序列的个数。 dp[i]有很多个,选择其中最大的dp[i]Math.max(dp[j]1,dp[i]) 2.代码实现 1class Solution {2 pub…...

使用 HTML、CSS 和 JavaScript 创建实时 Web 编辑器
使用 HTML、CSS 和 JavaScript 创建实时 Web 编辑器 在本文中,我们将创建一个实时网页编辑器。这是一个 Web 应用程序,允许我们在网页上编写 HTML、CSS 和 JavaScript 代码并实时查看结果。这是学习 Web 开发和测试代码片段的绝佳工具。我们将使用ifram…...

百望云联合华为发布票财税链一体化数智解决方案 赋能企业数字化升级
随着数据跃升为数字经济关键生产要素,数据安全成为整个数字化建设的重中之重。为更好地帮助企业发展,中央及全国和地方政府相继出台了多部与数据相关的政策法规,鼓励各领域服务商提供具有自主创新的软件产品与服务,帮助企业在合规…...

实现两个栈模拟队列
实现两个栈模拟队列 思路:可以想象一下左手和右手,两个栈:stack1(数据所在的栈) ,stack2(临时存放)。 入队:需要将入队 num 加在 stack1 的栈顶即可; 出队&am…...