建设企业网站价钱/世界杯球队最新排名
文章目录
- cascading
- 声明冲突
- 应用
- 重置样式表
- a元素的类选择器顺序问题
cascading
cascading – 层叠
解决声明冲突的过程,浏览器会自动处理;就是计算样式的权重,权重大的就被选择;
声明冲突
是指多个选择器选中同一个标签,如果属性名相同属性不同则会产生冲突,如果发生冲突浏览器会触发自己的层叠机制。层叠过程分成3个过程:依次从比较重要性、比较特殊性、比较原次序来触发层叠机制:
-
比较重要性
- 作者样式中
!important
属性样式 - 作者样式表中的普通样式
- 浏览器默认样式表的样式
- 作者样式中
-
比较特殊型
总体规则就是看选择器,选择器针对的范围越小,那么对应的选择器越特殊,那么久选择对应的声明冲突的选择器样式。
行内样式 > id选择器 > 类、伪类选择器、属性选择器 > 元素、伪元素选择器
计算逻辑就是通过选择器计算出一个4位数,最终那个选择器的数值大就用那个选择器的声明冲突的属性:- 千位:如果是内联样式,记1,否则记0
- 百位:等于选择器中所有id选择器的数量
- 十位:等于选择器中所有类选择器、属性选择器、伪类选择器的数量
- 个位:等于选择器中所有元素选择器、伪元素选择器的数量
以上的这些数量,逢256进1
,测试样式如下:
<style>a {/* 0001 */color: red;}div ul a {/* 0003 */color: green;}#mydiv #myul a {/* 0201 */color: gray;}#mydiv #myul .mylink {/* 0210 */color: #008c8c;}#mydiv #myul a:link {/* 0211 */color: chocolate;}</style>
<div id="mydiv"><ul id="myul"><li><a href="https://1234455.com" class="mylink">比较特殊性</a></li></ul></div>
-
比较顺序
浏览器从上到下分析代码,后面的css覆盖前面的css样式
应用
重置样式表
书写一些作者样式,覆盖浏览器的默认样式:用重置样式表覆盖浏览器默认样式表,然后再编写样式表覆盖重置样式表样式:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tGeZTnKp-1692416057143)(images/resetCSS.png)]
重置样式表就是先重置样式表,保证在每个浏览器中的显示效果一样,然后在这个默认的样式表基础上编写个人的样式表。重置样式表的意义就在于使重置样式表可以复用,不然每个项目的样式表都要考虑浏览器的默认样式表。
a元素的类选择器顺序问题
- a:link
- a:visited
- a:hover
- a:active
这4中选择器的优先级是一样的,那么后出现的会覆盖前面的,当多种情况出现时,要按照预期正确显示,就要按照上面的顺序进行css编写;
相关文章:

css层叠关系
文章目录 cascading声明冲突应用重置样式表a元素的类选择器顺序问题 cascading cascading – 层叠 解决声明冲突的过程,浏览器会自动处理;就是计算样式的权重,权重大的就被选择; 声明冲突 是指多个选择器选中同一个标签&#x…...

【Unity实战篇 】| 如何在小游戏中快速接入一个新手引导教程
前言 【Unity实战篇 】 | 如何在小游戏中快速接入一个新手引导教程一、简单教程描述二、接入Tutorial Master 实现游戏引导2.1 导入Tutorial Master2插件2.2 添加TutorialMasterManager脚本对象2.3 配置Tutorial,用于管理第一段引导内容2.4 配置Stage,用…...

Lookup Singularity
1. 引言 Lookup Singularity概念 由Barry WhiteHat在2022年11月在zkResearch论坛 Lookup Singularity中首次提出: 其主要目的是:让SNARK前端生成仅需做lookup的电路。Barry预测这样有很多好处,特别是对于可审计性 以及 形式化验证ÿ…...

idea 本地版本控制 local history
idea 本地版本控制 local history 如何打开 1 自定义快捷键 settings->keymap->搜索框输入 show history -》Add Keyboard Shortcut -》设置为 CtrlAltL 2 右键文件-》local history -》show history 新建文件 版本1,creating class com.geekmice…这个是初…...

【Freertos基础入门】深入浅出freertos互斥量
文章目录 前言一、互斥量是什么?二、互斥量的使用场景三、互斥量的使用1.创建 2.删除互斥量3.give和take四、示例代码总结 前言 FreeRTOS是一款开源的实时操作系统,提供了许多基本的内核对象,其中包括互斥锁(Mutex)。…...

皮爷咖啡基于亚马逊云科技的数据架构,加速数据治理进程
皮爷咖啡(Peet’s Coffee)是美国精品咖啡品牌,于2017年进入中国,为中国消费者带来传统经典咖啡饮品,并特别呈现更加丰富的品质咖啡饮品体验。通过深入应用亚马逊云科技云原生数据库产品Amazon Redshift以及Amazon DMS等…...

C++ string类详解
⭐️ string string 是表示字符串的字符串类,该类的接口与常规容器的接口基本一致,还有一些额外的操作 string 的常规操作,在使用 string 类时,需要使用 #include <string> 以及 using namespace std;。 ✨ 帮助文档&…...

深入浅出Pytorch函数——torch.nn.init.ones_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...

一、docker及mysql基本语法
文章目录 一、docker相关命令二、mysql相关命令 一、docker相关命令 (1)拉取镜像:docker pull <镜像ID/image> (2)查看当前docker中的镜像:docker images (3)删除镜像&#x…...

【计算机网络】13、ARP 包:广播自己的 mac 地址和 ip
机器启动时,会向外广播自己的 mac 地址和 ip 地址,这个即称为 arp 协议。范围是未经过路由器的部分,如下图的蓝色部分,范围内的设备都会在本地记录 mac 和 ip 的绑定信息,若有重复则覆盖更新(例如先收到 ma…...

通过微软Azure调用GPT的接口API-兼容平替OpenAI官方的注意事项
众所周知,我们是访问不通OpenAI官方服务的,但是我们可以自己通过代理或者使用第三方代理访问接口 现在新出台的规定禁止使用境外的AI大模型接口对境内客户使用,所以我们需要使用国内的大模型接口 国内的效果真的很差,现在如果想使…...

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计…...

GAN!生成对抗网络GAN全维度介绍与实战
目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…...

自动驾驶仿真:基于Carsim开发的加速度请求模型
文章目录 前言一、加速度输出变量问题澄清二、配置Carsim动力学模型三、配置Carsim驾驶员模型四、添加VS Command代码五、Run Control联合仿真六、加速度模型效果验证 前言 1、自动驾驶行业中,算法端对于纵向控制的功能预留接口基本都是加速度,我们需要…...

.netcore grpc客户端工厂及依赖注入使用
一、客户端工厂概述 gRPC 与 HttpClientFactory 的集成提供了一种创建 gRPC 客户端的集中方式。可以通过依赖包Grpc.Net.ClientFactory中的AddGrpcClient进行gRPC客户端依赖注入AddGrpcClient函数提供了许多配置项用于处理一些其他事项;例如AOP、重试策略等 二、案…...

C语言入门_Day7 逻辑运算
目录: 前言 1.逻辑运算 2.优先级 3.易错点 4.思维导图 前言 算术运算用来进行数据的计算和处理;比较运算是用来比较不同的数据,进而来决定下一步怎么做;除此以外还有一种运算叫做逻辑运算,它的应用场景也是用来影…...

什么是Eureka?以及Eureka注册服务的搭建
导包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 htt…...

Docker安装并配置镜像加速器,镜像、容器的基本操作
目录 1.安装docker服务,配置镜像加速器 (1)安装依赖的软件包 (2)设置yum源,我配置的阿里仓库 (3)选择一个版本安装 (4)启动docker服务,并设置…...

前端 -- 基础 网页、HTML、 WEB标准 扫盲详解
什么是网页 : 网页是构成网站的基本元素,它通常由 图片、链接、文字、声音、视频等元素组成。 通常我们看到的网页 ,常见以 .html 或 .htm 后缀结尾的文件, 因此俗称 HTML 文件 什么是 HTML : HTML 指的是 超文本标记语言,…...

分布式锁实现方式
分布式锁 1 分布式锁介绍 1.1 什么是分布式 一个大型的系统往往被分为几个子系统来做,一个子系统可以部署在一台机器的多个 JVM(java虚拟机) 上,也可以部署在多台机器上。但是每一个系统不是独立的,不是完全独立的。需要相互通信ÿ…...

C语言小练习(一)
🌞 “人生是用来体验的,不是用来绎示完美的,接受迟钝和平庸,允许出错,允许自己偶尔断电,带着遗憾,拼命绽放,这是与自己达成和解的唯一办法。放下焦虑,和不完美的自己和解…...

Flask-flask系统运行后台轮询线程
对于有些flask系统,后台需要启动轮询线程,执行特定的任务,以下是一个简单的例子。 globals/daemon.py import threading from app.executor.ops_service import find_and_run_ops_task_todo_in_redisdef context_run_func(app, func):with …...

jsp本质-servlet
jsp本质-servlet 一、jsp文件 <% page language"java" contentType"text/html; charsetUTF-8" pageEncoding"UTF-8"%> <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>JSP Example…...

回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基…...

科技资讯|苹果Vision Pro新专利曝光:可调节液态透镜
苹果公司近日申请了名为“带液态镜头的电子设备”,概述了未来可能的头显设计。头显设备中的透镜采用可调节的液态透镜,每个透镜可以具有填充有液体的透镜腔,透镜室可以具有形成光学透镜表面的刚性和 / 或柔性壁。 包括苹果自家的 Vision Pr…...

神经网络基础-神经网络补充概念-38-归一化输入
概念 归一化输入是一种常见的数据预处理技术,旨在将不同特征的取值范围映射到相似的尺度,从而帮助优化机器学习模型的训练过程。归一化可以提高模型的收敛速度、稳定性和泛化能力,减少模型受到不同特征尺度影响的情况。 常见的归一化方法 …...

【Redis】什么是缓存雪崩,如何预防缓存雪崩?
【Redis】什么是缓存雪崩,如何预防缓存雪崩? 如果缓存集中在一段时间内失效,也就是通常所说的热点数据集中失效 (一般都会给缓存设定一个失效时间,过了失效时间后,该数据库会被缓存直接删除,从…...

[国产MCU]-W801开发实例-开发环境搭建
W801开发环境搭建 文章目录 W801开发环境搭建1、W801芯片介绍2、W801芯片特性3、W801芯片结构4、开发环境搭建1、W801芯片介绍 W801芯片是联盛德微电子推出的一款高性价比物联网芯片。 W801 芯片是一款安全 IoT Wi-Fi/蓝牙 双模 SoC芯片。芯片提供丰富的数字功能接口。支持2.…...

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测
区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测。基于分位…...

改善神经网络——优化算法(mini-batch、动量梯度下降法、Adam优化算法)
改善神经网络——优化算法 梯度下降Mini-batch 梯度下降(Mini-batch Gradient Descent)指数加权平均包含动量的梯度下降RMSprop算法Adam算法 优化算法可以使神经网络运行的更快,机器学习的应用是一个高度依赖经验的过程,伴随着大量…...