当前位置: 首页 > news >正文

大数据:NumPy进阶应用详解

专栏介绍

结合自身经验和内部资料总结的Python教程,每天3-5章,最短1个月就能全方位的完成Python的学习并进行实战开发,学完了定能成为大佬!加油吧!卷起来!

全部文章请访问专栏:《Python全栈教程(0基础)》
再推荐一下最近热更的:《大厂测试高频面试题详解》 该专栏对近年高频测试相关面试题做详细解答,结合自己多年工作经验,以及同行大佬指导总结出来的。旨在帮助测试、python方面的同学,顺利通过面试,拿到自己满意的offer!


文章目录

    • 专栏介绍
    • NumPy进阶应用
      • 数组的运算
        • 数组跟标量的运算
        • 数组跟数组的运算
        • 通用一元函数
        • 通用二元函数
        • 广播机制
      • 其他常用函数
      • 矩阵运算
        • 线性代数快速回顾
        • NumPy中矩阵相关函数
        • NumPy的线性代数模块


NumPy进阶应用

数组的运算

使用 NumPy 最为方便的是当需要对数组元素进行运算时,不用编写循环代码遍历每个元素,所有的运算都会自动的矢量化(使用高效的、提前编译的底层代码来对数据序列进行数学操作)。简单的说就是,NumPy 中的数学运算和数学函数会自动作用于数组中的每个成员。

数组跟标量的运算

代码:

array35 = np.arange(1, 10)
print(array35 + 10)
print(array35 * 10)

输出:

[11 12 13 14 15 16 17 18 19]
[10 20 30 40 50 60 70 80 90]

数组跟数组的运算

代码:

array36 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3])
print(array35 + array36)
print(array35 * array36)
print(array35 ** array36)

输出:

[ 2  3  4  6  7  8 10 11 12]
[ 1  2  3  8 10 12 21 24 27]
[  1   2   3  16  25  36 343 512 729]

通用一元函数

通用函数是对ndarray中的数据执行元素级运算的函数。你可以将其看做普通函数(接收一个标量值作为参数,返回一个标量值)的矢量化包装器,如下所示。

代码:

print(np.sqrt(array35))
print(np.log2(array35))

输出:

[1.         1.41421356 1.73205081 2.         2.23606798 2.449489742.64575131 2.82842712 3.        ]
[0.         1.         1.5849625  2.         2.32192809 2.58496252.80735492 3.         3.169925  ]

表1:通用一元函数

函数说明
abs / fabs求绝对值的函数
sqrt求平方根的函数,相当于array ** 0.5
square求平方的函数,相当于array ** 2
exp计算 e x e^x ex的函数
log / log10 / log2对数函数(e为底 / 10为底 / 2为底)
sign符号函数(1 - 正数;0 - 零;-1 - 负数)
ceil / floor上取整 / 下取整
isnan返回布尔数组,NaN对应True,非NaN对应False
isfinite / isinf判断数值是否为无穷大的函数
cos / cosh / sin三角函数
sinh / tan / tanh三角函数
arccos / arccosh / arcsin反三角函数
arcsinh / arctan / arctanh反三角函数
rint / round四舍五入函数

通用二元函数

代码:

array37 = np.array([[4, 5, 6], [7, 8, 9]])
array38 = np.array([[1, 2, 3], [3, 2, 1]])
print(array37 ** array38)
print(np.power(array37, array38))

输出:

[[  4  25 216][343  64   9]]
[[  4  25 216][343  64   9]]

表2:通用二元函数

函数说明
add(x, y) / substract(x, y)加法函数 / 减法函数
multiply(x, y) / divide(x, y)乘法函数 / 除法函数
floor_divide(x, y) / mod(x, y)整除函数 / 求模函数
allclose(x, y)检查数组xy元素是否几乎相等
power(x, y)数组 x x x的元素 x i x_i xi和数组 y y y的元素 y i y_i yi,计算 x i y i x_i^{y_i} xiyi
maximum(x, y) / fmax(x, y)两两比较元素获取最大值 / 获取最大值(忽略NaN)
minimum(x, y) / fmin(x, y)两两比较元素获取最小值 / 获取最小值(忽略NaN)
dot(x, y)点积运算(数量积,通常记为 ⋯ \cdots ,用于欧几里得空间(Euclidean space))
inner(x, y)内积运算(内积的含义要高于点积,点积相当于是内积在欧几里得空间$$的特例,而内积可以推广到赋范向量空间,只要它满足平行四边形法则即可)
cross(x, y) 叉积运算(向量积,通常记为 × \times ×,运算结果是一个向量)
outer(x, y)外积运算(张量积,通常记为 ⨂ \bigotimes ,运算结果通常是一个矩阵)
intersect1d(x, y)计算xy的交集,返回这些元素构成的有序数组
union1d(x, y)计算xy的并集,返回这些元素构成的有序数组
in1d(x, y)返回由判断x 的元素是否在y中得到的布尔值构成的数组
setdiff1d(x, y)计算xy的差集,返回这些元素构成的数组
setxor1d(x, y)计算xy的对称差,返回这些元素构成的数组

补充说明:在二维空间内,两个向量 A = [ a 1 a 2 ] \boldsymbol{A}=\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} A=[a1a2] B = [ b 1 b 2 ] \boldsymbol{B}=\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} B=[b1b2]的叉积是这样定义的: A × B = ∣ a 1 a 2 b 1 b 2 ∣ = a 1 b 2 − a 2 b 1 \boldsymbol{A}\times \boldsymbol{B}=\begin{vmatrix} a_1 \quad a_2 \\ b_1 \quad b_2 \end{vmatrix}=a_1b_2 - a_2b_1 A×B= a1a2b1b2 =a1b2a2b1,其中 ∣ a 1 a 2 b 1 b 2 ∣ \begin{vmatrix} a_1 \quad a_2 \\ b_1 \quad b_2 \end{vmatrix} a1a2b1b2 称为行列式。但是一定要注意,叉积并不等同于行列式,行列式的运算结果是一个标量,而叉积运算的结果是一个向量。如果不明白,我们可以看看三维空间两个向量, A = [ a 1 a 2 a 3 ] \boldsymbol{A}=\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} A= a1a2a3 B = [ b 1 b 2 b 3 ] \boldsymbol{B}=\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} B= b1b2b3 的叉积是 < i ^ ∣ a 2 a 3 b 2 b 3 ∣ , − j ^ ∣ a 1 a 3 b 1 b 3 ∣ , k ^ ∣ a 1 a 2 b 1 b 2 ∣ > \left< \hat{i} \begin{vmatrix} a_2 \quad a_3 \\ b_2 \quad b_3 \end{vmatrix}, -\hat{j} \begin{vmatrix} a_1 \quad a_3 \\ b_1 \quad b_3 \end{vmatrix}, \hat{k} \begin{vmatrix} a_1 \quad a_2 \\ b_1 \quad b_2 \end{vmatrix} \right> i^ a2a3b2b3 ,j^ a1a3b1b3 ,k^ a1a2b1b2 ,其中 i ^ , j ^ , k ^ \hat{i}, \hat{j}, \hat{k} i^,j^,k^代表每个维度的单位向量。

广播机制

上面的例子中,两个二元运算的数组形状是完全相同的,我们再来研究一下,两个形状不同的数组是否可以直接做二元运算或使用二元函数进行运算,请看下面的例子。

代码:

array39 = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3]])
array40 = np.array([1, 2, 3])
array39 + array40

输出:

array([[1, 2, 3],[2, 3, 4],[3, 4, 5],[4, 5, 6]])

代码:

array41 = np.array([[1], [2], [3], [4]])
array39 + array41

输出:

array([[1, 1, 1],[3, 3, 3],[5, 5, 5],[7, 7, 7]])

通过上面的例子,我们发现形状不同的数组仍然有机会进行二元运算,但也绝对不是任意的数组都可以进行二元运算。简单的说,只有两个数组后缘维度相同或者其中一个数组后缘维度为1时,广播机制会被触发,而通过广播机制如果能够使两个数组的形状一致,才能进行二元运算。所谓后缘维度,指的是数组shape属性对应的元组中最后一个元素的值(从后往前数最后一个维度的值),例如,我们之前打开的图像对应的数组后缘维度为3,3行4列的二维数组后缘维度为4,而有5个元素的一维数组后缘维度为5。简单的说就是,后缘维度相同或者其中一个数组的后缘维度为1,就可以应用广播机制;而广播机制如果能够使得数组的形状一致,就满足了两个数组对应元素做运算的需求,如下图所示。


其他常用函数

除了上面讲到的函数外,NumPy 中还提供了很多用于处理数组的函数,ndarray对象的很多方法也可以通过直接调用函数来实现,下表给出了一些常用的函数。

表3:NumPy其他常用函数

函数说明
unique去除数组重复元素,返回唯一元素构成的有序数组
copy返回拷贝数组得到的数组
sort返回数组元素排序后的拷贝
split / hsplit / vsplit将数组拆成若干个子数组
stack / hstack / vstack将多个数组堆叠成新数组
concatenate沿着指定的轴连接多个数组构成新数组
append / insert向数组末尾追加元素 / 在数组指定位置插入元素
argwhere找出数组中非0元素的位置
extract / select / where按照指定的条件从数组中抽取或处理数组元素
flip沿指定的轴翻转数组中的元素
fromiter通过迭代器创建数组对象
fromregex通过读取文件和正则表达式解析获取数据创建数组对象
repeat / tile通过对元素的重复来创建新数组
roll沿指定轴对数组元素进行移位
resize重新调整数组的大小
place / put将数组中满足条件的元素/指定的元素替换为指定的值
partition用选定的元素对数组进行一次划分并返回划分后的数组

提示:上面的resize函数和ndarray对象的resize方法是有区别的,resize函数在调整数组大小时会重复数组中的元素作为填补多出来的元素的值,而ndarry对象的resize方法是用0来填补多出来的元素。这些小细节不清楚暂时也不要紧,但是如果用到对应的功能了就要引起注意。

代码:

array42 = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])
array43 = np.array([[4, 4, 4], [5, 5, 5], [6, 6, 6]])
np.hstack((array42, array43))

输出:

array([[1, 1, 1, 4, 4, 4],[2, 2, 2, 5, 5, 5],[3, 3, 3, 6, 6, 6]])

代码:

np.vstack((array42, array43))

输出:

array([[1, 1, 1],[2, 2, 2],[3, 3, 3],[4, 4, 4],[5, 5, 5],[6, 6, 6]])

代码:

np.concatenate((array42, array43))

输出:

array([[1, 1, 1],[2, 2, 2],[3, 3, 3],[4, 4, 4],[5, 5, 5],[6, 6, 6]])

代码:

np.concatenate((array42, array43), axis=1)

输出:

array([[1, 1, 1, 4, 4, 4],[2, 2, 2, 5, 5, 5],[3, 3, 3, 6, 6, 6]])

矩阵运算

NumPy 中提供了专门用于线性代数(linear algebra)的模块和表示矩阵的类型matrix,当然我们通过二维数组也可以表示一个矩阵,官方并不推荐使用matrix类而是建议使用二维数组,而且有可能在将来的版本中会移除matrix类。无论如何,利用这些已经封装好的类和函数,我们可以轻松愉快的实现线性代数中很多的操作。

线性代数快速回顾

  1. 向量也叫矢量,是一个同时具有大小和方向,且满足平行四边形法则的几何对象。与向量相对的概念叫标量数量,标量只有大小、绝大多数情况下没有方向。
  2. 向量可以进行数乘点积叉积等运算。
  3. 行列式由向量组成,它的性质可以由向量解释。
  4. 行列式可以使用行列式公式计算: d e t ( A ) = ∑ n ! ± a 1 α a 2 β ⋯ a n ω det(\boldsymbol{A})=\sum_{n!} \pm {a_{1\alpha}a_{2\beta} \cdots a_{n\omega}} det(A)=n!±a1αa2βa
  5. 高阶行列式可以用代数余子式展开成多个低阶行列式,如: d e t ( A ) = a 11 C 11 + a 12 C 12 + ⋯ + a 1 n C 1 n det(\boldsymbol{A})=a_{11}C_{11}+a_{12}C_{12}+ \cdots +a_{1n}C_{1n} det(A)=a11C11+a12C12++a1nC1n
  6. 矩阵是由一系列元素排成的矩形阵列,矩阵里的元素可以是数字、符号或数学公式。
  7. 矩阵可以进行加法减法数乘乘法转置等运算。
  8. 逆矩阵 A − 1 \boldsymbol{A^{-1}} A1表示, A A − 1 = A − 1 A = I \boldsymbol{A}\boldsymbol{A^{-1}}=\boldsymbol{A^{-1}}\boldsymbol{A}=\boldsymbol{I} AA1=A1A=I;没有逆矩阵的方阵是奇异矩阵
  9. 如果一个方阵是满秩矩阵(矩阵的秩等于矩阵的阶数),该方阵对应的线性方程有唯一解。

说明矩阵的秩是指矩阵中线性无关的行/列向量的最大个数,同时也是矩阵对应的线性变换的像空间的维度。

NumPy中矩阵相关函数

  1. 创建矩阵对象。

    代码:

    # matrix构造函数可以传入类数组对象也可以传入字符串
    m1 = np.matrix('1 2 3; 4 5 6')
    m1
    

    输出:

    matrix([[1, 2, 3],[4, 5, 6]])
    

    代码:

    # asmatrix函数也可以写成mat函数,它们其实是同一个函数
    m2 = np.asmatrix(np.array([[1, 1], [2, 2], [3, 3]]))
    m2
    

    输出:

    matrix([[1, 1],[2, 2],[3, 3]])
    

    代码:

    m1 * m2
    

    输出:

    matrix([[14, 14],[32, 32]])
    

    说明:注意matrix对象和ndarray对象乘法运算的差别,如果两个二维数组要做矩阵乘法运算,应该使用@运算符或matmul函数,而不是*运算符。

  2. 矩阵对象的属性。

    属性说明
    A获取矩阵对象对应的ndarray对象
    A1获取矩阵对象对应的扁平化后的ndarray对象
    I可逆矩阵的逆矩阵
    T矩阵的转置
    H矩阵的共轭转置
    shape矩阵的形状
    size矩阵元素的个数
  3. 矩阵对象的方法。

矩阵对象的方法跟之前讲过的ndarray数组对象的方法基本差不多,此处不再进行赘述。

NumPy的线性代数模块

NumPy 的linalg模块中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的函数,它们跟 MATLAB 和 R 等语言所使用的是相同的行业标准线性代数库,下面的表格列出了numpy以及linalg模块中常用的跟线性代数相关的函数。

函数说明
diag以一维数组的形式返回方阵的对角线元素或将一维数组转换为方阵(非对角元素元素为0)
vdot向量的点积
dot数组的点积
inner数组的内积
outer数组的叉积
trace计算对角线元素的和
norm求模(范数)运算
det计算行列式的值(在方阵上计算会得到一个标量)
matrix_rank计算矩阵的秩
eig计算矩阵的特征值(eigenvalue)和特征向量(eigenvector)
inv计算非奇异矩阵( n n n阶方阵)的逆矩阵
pinv计算矩阵的摩尔-彭若斯(Moore-Penrose)广义逆
qrQR分解(把矩阵分解成一个正交矩阵与一个上三角矩阵的积)
svd计算奇异值分解(singular value decomposition)
solve解线性方程组 A x = b \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b} Ax=b,其中 A \boldsymbol{A} A是一个方阵
lstsq计算 A x = b \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b} Ax=b的最小二乘解

大家如果有兴趣可以用下面的代码验证上面的函数。

代码:

m3 = np.array([[1., 2.], [3., 4.]])
np.linalg.inv(m3)

输出:

array([[-2. ,  1. ],[ 1.5, -0.5]])

代码:

m4 = np.array([[1, 3, 5], [2, 4, 6], [4, 7, 9]])
np.linalg.det(m4)

输出:

2

代码:

# 解线性方程组ax=b
# 3*x1 + x2= 9,x1 + 2*x2 = 8
a = np.array([[3,1], [1,2]])
b = np.array([9, 8])
np.linalg.solve(a, b)

输出:

array([2., 3.])

相关文章:

大数据:NumPy进阶应用详解

专栏介绍 结合自身经验和内部资料总结的Python教程&#xff0c;每天3-5章&#xff0c;最短1个月就能全方位的完成Python的学习并进行实战开发&#xff0c;学完了定能成为大佬&#xff01;加油吧&#xff01;卷起来&#xff01; 全部文章请访问专栏&#xff1a;《Python全栈教…...

new String创建几个对象

在java17中 &#xff1a; 问题1&#xff1a;new String("abc")会产生多少个对象&#xff1f; 分两种情况&#xff1a; 情况1&#xff1a; 如果”abc”这个字符串常量不存在&#xff0c;则创建两个对象&#xff0c;分别是“abc”这个字符串常量&#xff0c;以及ne…...

【路由协议】使用按需路由协议和数据包注入的即时网络模拟传递率(PDR)、总消耗能量和节点消耗能量以及延迟研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

c#实现依赖注入

当谈到C#中的依赖注入(Dependency Injection,DI)时,我们可以使用一个简单的示例来说明它是如何工作的。依赖注入是一种设计模式,用于将依赖关系从一个类传递到另一个类,以实现松耦合和可测试性。 假设我们有一个简单的订单处理应用程序,其中包含两个主要类:OrderServi…...

算法通关村十一关 | 位运算实现加法和乘法

1.位实现加法和乘法 在计算机中&#xff0c;位运算的效率要比加减乘除的效率更高&#xff0c;因此在高性能软件中源码中大量使用&#xff0c;计算机里各种运算基本上都是位运算。 学习下面内容之前建议先学习位运算规则&#xff1a;算法通关村十一关 | 位运算的规则_我爱学算…...

C++笔记之条件变量(Condition Variable)与cv.wait 和 cv.wait_for的使用

C笔记之条件变量&#xff08;Condition Variable&#xff09;与cv.wait 和 cv.wait_for的使用 参考博客&#xff1a;C笔记之各种sleep方法总结 code review! 文章目录 C笔记之条件变量&#xff08;Condition Variable&#xff09;与cv.wait 和 cv.wait_for的使用1.条件变量&…...

Dubbo之DubboBootstrap源码解析

功能描述 DubboBootstrap是Dubbo的启动类&#xff0c;包含服务启动、初始化、预处理配置、销毁清理等核心功能 功能分析 核心DubboBootstrap类分析 主要成员变量分析 private static volatile DubboBootstrap instance; //缓存者启动类的实例对象&#xff0c;以static形式…...

SpringBoot + Vue 微人事 项目 (第八天)

基础信息设置 在该页面添加一个大div&#xff0c;然后添加一个tab选项卡&#xff0c;Element UI里面有 把代码复制到大div里面&#xff0c;把里面的label和name属性改成我们想要的&#xff0c;再把tab-click"handleClick"去掉 <div><el-tabs v-model"a…...

人工智能引领图文扫描新趋势

1. 背景和影响 近日&#xff0c;中国大学生服务外包创新创业大赛决赛在江南大学圆满落幕。为满足现代服务产业企业的现实需求&#xff0c;本次竞赛内容设计充分聚焦企业发展中所面临的技术、管理等现实问题&#xff0c;与产业的结合度更紧密&#xff0c;智能文字识别技术是大赛…...

ChatGPT在智能城市规划和交通优化中的应用如何?

智能城市规划和交通优化是应对城市化挑战、提高城市可持续性的重要领域。在这方面&#xff0c;ChatGPT作为一种强大的自然语言处理模型&#xff0c;可以发挥重要作用&#xff0c;帮助实现更智能、高效的城市规划和交通管理。本文将详细探讨ChatGPT在智能城市规划和交通优化中的…...

探索Perfetto:开源性能追踪工具的未来之光

探索Perfetto&#xff1a;开源性能追踪工具的未来之光 1. 引言 A. 介绍Perfetto的背景和作用 随着移动应用、桌面软件和嵌入式系统的不断发展&#xff0c;软件性能优化变得愈发重要。在这个背景下&#xff0c;Perfetto作为一款开源性能追踪工具&#xff0c;日益引起了开发者…...

A*算法图文详解

基本概念 A*算法最早于1964年在IEEE Transactions on Systems Science and Cybernetics中的论文《A Formal Basis for the Heuristic Determination of Minimum Cost Paths》中首次提出。其属于一种经典的启发式搜索方法&#xff0c;所谓启发式搜索&#xff0c;就在于当前搜索…...

[MySQL] — 数据类型和表的约束

目录 数据类型 数据类型分类 数值类型 tinyint类型 bit类型 小数类型 float decimal 字符串类型 char varchar char和varchar的区别 日期和时间类型 enum 和 set 表的约束 空属性 默认值 列描述 zeorfill 主键 创建表时在字段上指定主键 删除主键&#xff1a; 追…...

JetBrains IDE远程开发功能可供GitHub用户使用

JetBrains与GitHub去年已达成合作&#xff0c;提供GitHub Codespaces 与 JetBrains Gateway 之间的集成。 GitHub Codespaces允许用户创建安全、可配置、专属的云端开发环境&#xff0c;此集成意味着您可以通过JetBrains Gateway使用在 GitHub Codespaces 中运行喜欢的IDE进行…...

LVS 负载均衡集群

集群 集群&#xff08;Cluster&#xff09;是一组相互连接的计算机或服务器&#xff0c;它们通过网络一起工作以完成共同的任务或提供服务。集群的目标是通过将多台计算机协同工作&#xff0c;提高计算能力、可用性、性能和可伸缩性&#xff0c;适用于大量高并发的场景。 集群…...

Mongodb Ubuntu安装

Mongodb Ubuntu安装 1.更新软件源导入MongoDB的GPG密钥 sudo apt update sudo apt install -y dirmngr wget gnupg apt-transport-https ca-certificates software-properties-common gnupgwget -qO - https://www.mongodb.org/static/pgp/server-6.0.asc | sudo apt-key add…...

【Spring Boot 源码学习】自动装配流程源码解析(下)

自动装配流程源码解析&#xff08;下&#xff09; 引言往期内容主要内容4. 排除指定自动配置组件5. 过滤自动配置组件6. 触发自动配置事件 总结 引言 上篇博文&#xff0c;笔者带大家了解了自动装配流程中有关自动配置加载的流程&#xff1b; 本篇将介绍自动装配流程剩余的内…...

基于微信小程序的毕业设计题目200例

个人简介&#xff1a;7 年大厂程序员经历&#xff0c;擅长Java、微信小程序、Python、Android等&#xff0c;大家有这一块的问题可以一起交流&#xff01; 各类成品 java毕设 。javaweb&#xff0c;ssh&#xff0c;ssm&#xff0c;springboot等等项目框架&#xff0c;源码丰富&…...

【数据管理】什么是数据管理?

文章目录 前言常见内容主题领域数据类型元数据引用数据主数据交易数据 数据类型的特点数据类型之间的关系GIGO数据质量评估 数据质量管理数据治理数据安全 前言 数据管理&#xff0c;即对数据资源的管理。按照 DAMA &#xff08;国际数据管理协会&#xff09;的定义&#xff1…...

[oneAPI] 手写数字识别-LSTM

[oneAPI] 手写数字识别-LSTM 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛&#xff1a;https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI&#xff1a;https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolk…...

通过css设置filter 属性,使整个页面呈现灰度效果,让整个网页变灰

通过css设置filter 属性设置页面整体置灰 效果图: 通过设置 filter 属性为 grayscale(100%)&#xff0c;页面中的所有元素都会被应用灰色滤镜效果&#xff0c;使整个页面呈现灰度效果。 <style type"text/css"> html { filter: grayscale(100%); -webkit-f…...

ahooks.js:一款强大的React Hooks库及其API使用教程(一)

一、ahooks.js简介二、ahooks.js安装三、ahooks.js API介绍与使用教程1. useRequest2. useAntdTable3. useSize4. useBoolean5. useToggle6. useHover7. useDebounce8. useEventListener9. useFusionTable10. useKeyPress11. useLoading12. usePrevious13. useForm14. useUpdat…...

拟合圆算法源码(商业)

1、输入一些点 2、执行fitCircle算法 3、输出圆心(x,y)及半径r Box fitCircle(const std::vector<cv::Point2f>& points) {Box box;box.x = 0.0f;box.y = 0.0f;box.r = 0.0f;if (points.size() < 3){return box;}int i = 0;double X1 = 0;double Y1 = 0;doubl…...

第一章 IRIS 编程简介

文章目录 第一章 IRIS 编程简介简介ClassesRoutines 第一章 IRIS 编程简介 简介 IRIS 是一个高性能多模型数据平台&#xff0c;具有内置的通用编程语言 ObjectScript&#xff0c;以及对 Python 的内置支持。 IRIS 支持多进程并提供并发控制。每个进程都可以直接、高效地访问…...

Leetcode-每日一题【剑指 Offer 32 - III. 从上到下打印二叉树 III】

题目 请实现一个函数按照之字形顺序打印二叉树&#xff0c;即第一行按照从左到右的顺序打印&#xff0c;第二层按照从右到左的顺序打印&#xff0c;第三行再按照从左到右的顺序打印&#xff0c;其他行以此类推。 例如: 给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20…...

.NET应用UI组件DevExpress XAF v23.1 - 全新的日程模块

DevExpress XAF是一款强大的现代应用程序框架&#xff0c;允许同时开发ASP.NET和WinForms。DevExpress XAF采用模块化设计&#xff0c;开发人员可以选择内建模块&#xff0c;也可以自行创建&#xff0c;从而以更快的速度和比开发人员当前更强有力的方式创建应用程序。 在新版中…...

UBuntu18.04 Qt之双HDMI屏切换

UBuntu18.04 Qt之双HDMI接2个4K屏并分别设置分辨率、主屏、副屏 一、设置HDMI-2为主屏 在main函数里面添加&#xff1a; #include "mainwindow.h" #include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);{long nTotal 0;c…...

c#配置提供者

在 C# 中,配置系统是一种用于管理应用程序配置数据的机制。通常情况下,应用程序的配置数据包括连接字符串、应用程序设置、环境变量等。C# 配置系统允许您轻松地读取和使用这些配置数据,而不需要硬编码在代码中。 除了默认的配置提供者外,C# 配置系统还支持其他配置提供者…...

python rtsp 硬件解码 二

上次使用了python的opencv模块 述说了使用PyNvCodec 模块&#xff0c;这个模块本身并没有rtsp的读写&#xff0c;那么读写rtsp是可以使用很多方法的&#xff0c;我们为了输出到pytorch直接使用AI程序&#xff0c;简化rtsp 输入&#xff0c;可以直接使用ffmpeg的子进程 方法一 …...

搭载KaihongOS的工业平板、机器人、无人机等产品通过3.2版本兼容性测评,持续繁荣OpenHarmony生态

近日&#xff0c;搭载深圳开鸿数字产业发展有限公司&#xff08;简称“深开鸿”&#xff09;KaihongOS软件发行版的工业平板、机器人、无人机等商用产品均通过OpenAtom OpenHarmony&#xff08;以下简称“OpenHarmony”&#xff09;3.2 Release版本兼容性测评&#xff0c;获颁O…...

java主要就是做网站吗/seo是什么职位简称

标题是我面试的时候使用的一道题目&#xff0c;结果是是使用最笨的方式——使用便利&#xff0c;但是面试官教我使用Set这个类 在网上找了这么一张表&#xff0c;可以看看 自己做的一个小demo可以参考 package hb.array_unite_collate;import java.util.ArrayList;import java…...

做一网站困难吗/百度搜索官网

查看演示 下载皮肤文件 对应Cs Tip09, 我就有一个测试的Cs站点, 完全重写了了Cs的皮肤文件 还有一个Css Hack <!--[if IE 5]> <style typetext/CSS> <!-- #content{width: 540px;} #sidebar-a{width: 220px;} //--> </style> <![endif]--> 原因参…...

网站建设的三个步骤是什么/永久免费客服系统

关于Linux系统的HugePages与Oracle数据库优化&#xff0c;可以参考熊爷之前的文章&#xff0c;相关概念介绍的非常清晰&#xff1a; Linux大内存页Oracle数据库优化本文旨在Linux系统上快速配置HugePages&#xff1a; 1.设置memlock无限制2.设置合理的vm.nr_hugepages3.确认Hug…...

做网站播放未上映的电影是侵权吗/贵阳百度快照优化排名

电信域名系统列表 (按拼音排序&#xff0c; 共32条)电信A安徽202.102.192.68202.102.199.6861.132.163.68202.102.213.68电信A澳门202.175.3.8202.175.3.3电信B北京202.96.199.133202.96.0.133电信C重庆61.128.128.6861.128.192.68电信F福建218.85.157.99218.85.152.99电信G甘肃…...

如何查看用wordpress建的站点/阿拉营销网站

文章目录一、题目1、题目描述2、基础框架3、原题链接二、解题报告1、思路分析2、时间复杂度3、代码详解三、本题小知识四、加群须知一、题目 1、题目描述 设计一种算法&#xff0c;将一个新节点插入到一个完全二叉树中&#xff0c;并在插入后保持其完整。实现 CBTInserter类: …...

商城展示网站/希爱力吃一颗能干多久

背景 先前开源了一个开源项目&#xff1a; 【阿里巴巴开源项目: 基于mysql数据库binlog的增量订阅&消费】 本文主要是介绍一下如何部署&使用 环境要求 1. 操作系统 a. 纯java开发&#xff0c;windows/linux均可支持 b. jdk建议使用1.6.25以上的版本&#xff0c;稳定…...