opencv进阶12-EigenFaces 人脸识别
EigenFaces 通常也被称为 特征脸,它使用主成分分析(Principal Component Analysis,PCA) 方法将高维的人脸数据处理为低维数据后(降维),再进行数据分析和处理,获取识别结果。
基本原理
在现实世界中,很多信息的表示是有冗余的。例如,表 23-2 所列出的一组圆的参数中就存在冗余信息。

在表 23-2 所示的参数中,各个参数之间存在着非常强的相关性:
- 直径 = 2*半径
- 周长 = 2π半径
- 面积 = π半径半径
可以看到,直径、周长和面积都可以通过半径计算得到。
在进行数据分析时,如果我们希望更直观地看到这些参数的值,就需要获取所有字段的值。
但是,在比较圆的面积大小时,仅使用半径就足够了,此时其他信息对于我们来说就是“冗余”的。
因此,我们可以理解“半径”就是表 23-2 所列数据中的“主成分”,我们将“半径”从上述数据中提取出来供后续分析使用,就实现了“降维”。
当然,上面例子的数据非常简单、易于理解,而在大多数情况下,我们要处理的数据是比较复杂的。很多时候,我们可能无法直接判断哪些数据是关键的“主成分”,所以就要通过 PCA方法将复杂数据内的“主成分”分析出来。
EigenFaces 就是对原始数据使用 PCA 方法进行降维,获取其中的主成分信息,从而实现人脸识别的方法。
函数介绍
OpenCV 通过函数 cv2.face.EigenFaceRecognizer_create()生成特征脸识别器实例模型,然后应用 cv2.face_FaceRecognizer.train()函数完成训练,最后用 cv2.face_FaceRecognizer.predict()函数完成人脸识别。
- 函数cv2.face.EigenFaceRecognizer_create()
函数 cv2.face.EigenFaceRecognizer_create()的语法格式为:
retval = cv2.face.EigenFaceRecognizer_create( [, num_components[,
threshold]] )
式中的两个参数都是可选参数,含义如下:
- num_components:在 PCA 中要保留的分量个数。当然,该参数值通常要根据输入数据
来具体确定,并没有一定之规。一般来说,80 个分量就足够了。 - threshold:进行人脸识别时所采用的阈值。
- 函数cv2.face_FaceRecognizer.train()
函数 cv2.face_FaceRecognizer.train()对每个参考图像进行 EigenFaces 计算,得到一个向量。
每个人脸都是整个向量集中的一个点。该函数的语法格式为:
None = cv2.face_FaceRecognizer.train( src, labels )
式中各个参数的含义为:
- src:训练图像,用来学习的人脸图像。
- labels:人脸图像所对应的标签。
该函数没有返回值。
- 函数cv2.face_FaceRecognizer.predict()
函数 cv2.face_FaceRecognizer.predict()在对一个待测人脸图像进行判断时,会寻找与当前图像距离最近的人脸图像。与哪个人脸图像最接近,就将待测图像识别为其对应的标签。该函数的语法格式为:
label, confidence = cv2.face_FaceRecognizer.predict( src )
式中各个参数及返回值的含义为:
- src:需要识别的人脸图像。
- label:返回的识别结果标签。
- confidence:返回的置信度评分。置信度评分用来衡量识别结果与原有模型之间的距离。
0 表示完全匹配。该参数值通常在 0 到 20 000 之间,只要低于 5000,都被认为是相当可靠的识别结果。注意,这个范围与 LBPH 的置信度评分值的范围是不同的。
示例:使用 EigenFaces 模块完成一个简单的人脸识别程序。
import cv2
import numpy as np
images=[]
images.append(cv2.imread("face\\face2.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face3.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face4.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE))
labels=[0,0,1,1]
#print(labels)
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels))
predict_image=cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE)
label,confidence= recognizer.predict(predict_image)
print("label=",label)
print("confidence=",confidence)
运行结果:
报错了

说训练必须所有的图片大小要一致。
新代码:
import cv2
import numpy as np
images=[]
img1= cv2.imread("face\\face2.png",cv2.IMREAD_GRAYSCALE);
img1.resize((240,240))
images.append(img1)img2= cv2.imread("face\\face3.png",cv2.IMREAD_GRAYSCALE);
img2.resize((240,240))
images.append(img2)img3= cv2.imread("face\\face4.png",cv2.IMREAD_GRAYSCALE);
img3.resize((240,240))
images.append(img3)img4= cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE);
img4.resize((240,240))
images.append(img4)labels=[0,0,1,1]
#print(labels)
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels)) # 识别器训练
predict_image=cv2.imread("face\\face6.png",cv2.IMREAD_GRAYSCALE)
predict_image.resize((240,240))
label,confidence= recognizer.predict(predict_image)
print("label=",label)
print("confidence=",confidence)
运行结果:
label= 1
confidence= 11499.110301703204
从结果来看,比 LBPH 人脸识别 对比稍微准点。
相关文章:
opencv进阶12-EigenFaces 人脸识别
EigenFaces 通常也被称为 特征脸,它使用主成分分析(Principal Component Analysis,PCA) 方法将高维的人脸数据处理为低维数据后(降维),再进行数据分析和处理,获取识别结果。 基本原理…...
The internal rate of return (IRR)
内部收益率 NPV(Net Present Value)_spencer_tseng的博客-CSDN博客...
半导体自动化专用静电消除器主要由哪些部分组成
半导体自动化专用静电消除器是一种用于消除半导体生产过程中的静电问题的设备。由于半导体制造过程中对静电的敏感性,静电可能会对半导体器件的质量和可靠性产生很大的影响,甚至造成元件损坏。因此,半导体生产中采用专用的静电消除器是非常重…...
【C++入门到精通】C++入门 —— deque(STL)
阅读导航 前言一、deque简介1. 概念2. 特点 二、deque使用1. 基本操作(增、删、查、改)2. 底层结构 三、deque的缺陷四、 为什么选择deque作为stack和queue的底层默认容器总结温馨提示 前言 文章绑定了VS平台下std::deque的源码,大家可以下载…...
Codeforces Round 893 (Div. 2) D.Trees and Segments
原题链接:Problem - D - Codeforces 题面: 大概意思就是让你在翻转01串不超过k次的情况下,使得a*(0的最大连续长度)(1的最大连续长度)最大(1<a<n)。输出n个数&…...
SpringBoot + Vue 前后端分离项目 微人事(九)
职位管理后端接口设计 在controller包里面新建system包,再在system包里面新建basic包,再在basic包里面创建PositionController类,在定义PositionController类的接口的时候,一定要与数据库的menu中的url地址到一致,不然…...
【业务功能篇71】Cglib的BeanCopier进行Bean对象拷贝
选择Cglib的BeanCopier进行Bean拷贝的理由是, 其性能要比Spring的BeanUtils,Apache的BeanUtils和PropertyUtils要好很多, 尤其是数据量比较大的情况下。 BeanCopier的主要作用是将数据库层面的Entity转化成service层的POJO。BeanCopier其实已…...
让eslint的错误信息显示在项目界面上
1.需求描述 效果如下 让eslint中的错误,显示在项目界面上 2.问题解决 1.安装 vite-plugin-eslint 插件 npm install vite-plugin-eslint --save-dev2.配置插件 // vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import e…...
手摸手带你实现一个开箱即用的Node邮件推送服务
目录 编辑 前言 准备工作 邮箱配置 代码实现 服务部署 使用效果 题外话 写在最后 相关代码: 前言 由于邮箱账号和手机号的唯一性,通常实现验证码的校验时比较常用的两种方式是手机短信推送和邮箱推送,此外,邮件推送服…...
【Linux网络】网络编程套接字 -- 基于socket实现一个简单UDP网络程序
认识端口号网络字节序处理字节序函数 htonl、htons、ntohl、ntohs socketsocket编程接口sockaddr结构结尾实现UDP程序的socket接口使用解析socket处理 IP 地址的函数初始化sockaddr_inbindrecvfromsendto 实现一个简单的UDP网络程序封装服务器相关代码封装客户端相关代码实验结…...
Python学习笔记第六十四天(Matplotlib 网格线)
Python学习笔记第六十四天 Matplotlib 网格线普通网格线样式网格线 后记 Matplotlib 网格线 我们可以使用 pyplot 中的 grid() 方法来设置图表中的网格线。 grid() 方法语法格式如下: matplotlib.pyplot.grid(bNone, whichmajor, axisboth, )参数说明:…...
机器学习与模式识别3(线性回归与逻辑回归)
一、线性回归与逻辑回归简介 线性回归主要功能是拟合数据,常用平方误差函数。 逻辑回归主要功能是区分数据,找到决策边界,常用交叉熵。 二、线性回归与逻辑回归的实现 1.线性回归 利用回归方程对一个或多个特征值和目标值之间的关系进行建模…...
vue启动配置npm run serve,动态环境变量,根据不同环境访问不同域名
首先创建不同环境的配置文件,比如域名和一些常量,创建一个env文件,先看看文件目录 env.dev就是dev环境的域名,.test就是test环境域名,其他同理,然后配置package.json文件 {"name": "require-admin&qu…...
HTML <strike> 标签
HTML5 中不支持 <strike> 标签在 HTML 4 中用于定义删除线文本。 定义和用法 <strike> 标签可定义加删除线文本定义。 浏览器支持 元素ChromeIEFirefoxSafariOpera<strike>YesYesYesYesYes 所有浏览器都支持 <strike> 标签。 HTML 与 XHTML 之间…...
数学建模-模型详解(1)
规划模型 线性规划模型: 当涉及到线性规划模型实例时,以下是一个简单的示例: 假设我们有两个变量 x 和 y,并且我们希望最大化目标函数 Z 5x 3y,同时满足以下约束条件: x > 0y > 02x y < 10…...
MySQL 数据库表的基本操作
一、数据库表概述 在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。 二、数…...
企业微信电脑端开启chrome调试
首先: Mac端调试开启的快捷键:control shift command d Window端调试开启的快捷键: control shift alt d 这边以Mac为例,我们可以在电脑顶部看到调试的入口: 然后我们点击 『浏览器、webView相关』菜单,勾选上…...
Maven官网下载配置新仓库
1.Maven的下载 Maven的官网地址:Maven – Download Apache Maven 点击Download,查找 Files下的版本并下载如下图: 2.Maven的配置 自己在D盘或者E盘创建一个文件夹,作为本地仓库,存放项目依赖。 将下载好的zip文件进行解…...
银河麒麟V10 达梦安装教程
安装前先准备要安装包,包需要需要区分X86和arm架构。 版本为:dm8_20230419_FTarm_kylin10_sp1_64.iso 达梦数据库下载地址: https://www.aliyundrive.com/s/Qm7Es5BQM5U 第一步创建用户 su - root 1. 创建安装用户组 dminstall。 groupad…...
Python操作MongoDB数据库
安装MongoDB库 pip install pymongopython 代码 Author: tkhywang 2810248865qq.com Date: 2023-08-21 10:22:30 LastEditors: tkhywang 2810248865qq.com LastEditTime: 2023-08-21 11:17:45 FilePath: \PythonProject02\MongoDB 数据库.py Description: 这是默认设置,请设置…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
