当前位置: 首页 > news >正文

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测

目录

    • 分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.分类预测 | MATLAB实现DRN深度残差网络多输入分类预测
2.代码说明:MATLAB实现DRN深度残差网络多输入分类预测。
程序平台:要求于Matlab 2021版及以上版本。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现DRN深度残差网络多输入分类预测获取。
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值%%  迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测

分类预测 | MATLAB实现DRN深度残差网络多输入分类预测 目录 分类预测 | MATLAB实现DRN深度残差网络多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现DRN深度残差网络多输入分类预测 2.代码说明&#xff1a;MATLAB实现DRN深度残差网络…...

docker学习(十五)docker安装MongoDB

什么是MongoDB? MongoDB 是一个开源的、面向文档的 NoSQL 数据库管理系统&#xff0c;它以高性能、灵活的数据存储方式而闻名。与传统的关系型数据库不同&#xff0c;MongoDB 采用了一种称为 BSON&#xff08;Binary JSON&#xff09;的二进制 JSON 格式来存储数据。它是一种非…...

3.JQuery closest()的用法

closest&#xff08;&#xff09;是一个非常好用的查找祖先对象的方法&#xff0c;它和parent&#xff08;&#xff09;和parents&#xff08;&#xff09;相比&#xff0c;优点是简洁直观&#xff0c;返回0或1个对象&#xff0c;避免了返回很多对象而不知道怎么处理的尴尬&…...

速通蓝桥杯嵌入式省一教程:(七)定时器输入捕获中断与PWM频率占空比测量

前文已经讲述过定时器的两个用法&#xff1a;基本定时中断与PWM输出。本节接着介绍第三种用法&#xff1a;定时器输入捕获中断。 在此之前&#xff0c;需要解释一下前文一直出现过的与定时器有关的概念。 定时器(TIMER)&#xff1a;所谓定时器&#xff0c;其基本功能就是定时…...

深入理解python虚拟机:程序执行的载体——栈帧

栈帧&#xff08;Stack Frame&#xff09;是 Python 虚拟机中程序执行的载体之一&#xff0c;也是 Python 中的一种执行上下文。每当 Python 执行一个函数或方法时&#xff0c;都会创建一个栈帧来表示当前的函数调用&#xff0c;并将其压入一个称为调用栈&#xff08;Call Stac…...

云服务器-Docker容器-系统搭建部署

一、引言 最近公司在海外上云服务器&#xff0c;作者自己也搞了云服务器去搭建部署系统&#xff0c;方便了解整体架构和系统的生命周期&#xff0c;排查解决问题可以从原理侧进行分析实验。虽然用的云不是同一个&#xff0c;但是原理都是相通的。 二、选型 作者选用的是腾讯云…...

ES 索引重命名--Reindex(一)

ES reindex脚本流程&#xff0c;下图为整体流程&#xff1a; 步骤&#xff08;1&#xff09;&#xff1a;每次写入把之前的索引删除再重新创建索引&#xff0c;然后判断索引是否创建成功&#xff0c;由于创建成功返回结果是json&#xff0c;因此用Json Input插件去解析json获得…...

Spring之bean的生命周期

目录 1.Bean的初始化过程 1.1代码详解 1.2思考 2.Bean的单例与多例选择 2.1论证单例与多例优缺点 2.2论证初始化时间点 2.3个例演示 Spring Bean的生命周期&#xff1a; 一、通过XML、Java annotation&#xff08;注解&#xff09;以及Java Configuration(配置类),等方式…...

策略梯度方法

策略梯度方法 数学背景 给定一个标量函数 J ( θ ) J\left(\theta\right) J(θ)&#xff0c;利用梯度上升法&#xff0c;使其最大化&#xff0c;此时的 π θ \pi_\theta πθ​就是最优策略。 θ t 1 θ t α ∇ θ J ( θ t ) \theta_{t1}\theta_t\alpha \nabla_\theta…...

博客系统之单元测试

对博客系统进行单元测试 1、测试查找已存在的用户 测试名称 selectByUsernameTest01 测试源码 //查找用户&#xff0c;存在 Test public void selectByUsernameTest01 () { UserDao userDao new UserDao(); String ret1 userDao.selectByUsername("张三").toStr…...

【ARM v8】如何在ARM上实现x86的rdtsc()函数

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…...

redis--事务

redis事务 在Redis中&#xff0c;事务是一组原子性操作的集合&#xff0c;它们被一起执行&#xff0c;要么全部执行成功&#xff0c;要么全部回滚。虽然Redis的事务并不遵循传统数据库的ACID特性&#xff0c;但它仍然提供了一种将多个命令打包成一组执行的机制&#xff0c;适用…...

111. 二叉树的最小深度

111. 二叉树的最小深度 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeN…...

SpringMVC归纳与总结

前言 Spring的核心是IOC&#xff0c;一种依赖反转的解耦思想。MVC是一种处理Web请求的架构模式&#xff0c;当两者的作用结合&#xff0c;就形成了SpringMVC。 组成及运行原理 1. 两次映射 2. 为什么用适配器模式 过滤器与拦截器 1. 范围 静态资源与动态资源2. 生命周期…...

Python学习笔记_进阶篇(三)_django知识(二)

本章内容 Django model Model 基础配置 django默认支持sqlite&#xff0c;mysql, oracle,postgresql数据库。 <1> sqlite django默认使用sqlite的数据库&#xff0c;默认自带sqlite的数据库驱动 引擎名称&#xff1a;django.db.backends.sqlite3 <2>mysql …...

RISC-V 整型通用寄存器介绍

简介 RISC-V64位/32位提供了32个整型通用寄存器&#xff0c;编号是x0~x31&#xff0c;这些整型通用寄存器的宽度与架构位数一致。 浮点数寄存器与整形寄存器一样也提供了32个&#xff1a;f0~f31&#xff0c;位数与架构位数一致。 通用寄存器介绍 零寄存器 x0/zero x0寄存…...

学习Vue:【性能优化】异步组件和懒加载

在Vue.js应用开发中&#xff0c;性能优化是一个至关重要的主题&#xff0c;而异步组件和懒加载是提升性能的有效方法之一。本文将介绍什么是异步组件和懒加载&#xff0c;以及如何在Vue.js中应用这些技术来提升应用性能。 异步组件和懒加载 异步组件 异步组件是指在需要的时候…...

pdf格式文件下载不预览,云存储的跨域解决

需求背景 后端接口中返回的是pdf文件路径比如&#xff1a; pdf文件路径 &#xff08;https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&#xff09; 前端适配是这样的 <ahref"https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&…...

httplib + nlohmann::json上传数据时中文乱码解决

1、nlohmann::json 1.1 编码格式使用UTF-8 参考 nlohmann::json 中文乱码解决方案 &#xff08;1&#xff09;将数据先转为UTF-8格式 2、httplib 2.1 上传数据前 &#xff08;1&#xff09;调用httplib::Response对象的set_header()方法来设置编码格式 httplib::Response res…...

JavaScript中的设计模式之一--单例模式和模块

虽然有一种疯狂天才的感觉可能很诱人&#xff0c;但重新发明轮子通常不是设计软件的最佳方法。很有可能有人已经遇到了和你一样的问题&#xff0c;并以一种聪明的方式解决了它。这样的最佳实践在形式化后被称为设计模式。今天我们来看看它们的概念&#xff0c;并检查单例模式和…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...