当前位置: 首页 > news >正文

自我理解:精度(precision)和召回(recall)

1、精度(precision)

  • 精度是用于评估分类模型的一个重要指标。它反映了模型预测为正例的样本中,实际真正为正例样本的比例。
    • 【注】正例样本指在二分类问题中,被标注为正类的样本。
      • 例如:在垃圾邮件分类任务中,正例样本就是真实的垃圾邮件。
  • 精度的计算公式
    • 精度 = 正确预测为正例的样本数 / 总预测为正例的样本数
    • 例如,在二分类问题中,如果有100个样本被模型预测为正例,其中80个样本实际真为正例,20个样本被误判。
    • 那么这个模型的精度为:80 / 100 = 80%。
    • 也就是说,这个模型预测为正例的样本中,有80%实际是正例,20%是误报的负例。
  • 精度反映了模型的预测结果中,正类样本所占的比例。它代表了模型的预测准确性和精确度。精度指标越高,说明模型的预测效果越好。
  • 通俗解释
    • 假设班上有50个学生,其中10个学生的数学成绩很好。现在老师让所有学生做一份数学测试,结果通过测试的数学好的学生有8个,通过测试的其他学生有5个。
    • 那么此时,精度 = 测试通过的数学好学生数量 / 总共测试通过的学生数量 = 8 / (8 + 5) = 8 / 13 = 61.5%
    • 精度反映了在全部测试通过的学生中,数学好的学生的比例。

2、召回(recall)

  • 召回是用于评估分类模型效果的一个重要指标。它衡量模型正确识别出正样本的比例。
  • 召回率(recall)也称为真阳性率(True Positive Rate)或敏感度(Sensitivity)。
  • 召回的计算公式
    • 召回率 = 模型预测出的正例样本数 / 所有的正例样本总数
    • 例如,假设有100个正例样本,模型只预测出了其中的80个为正例。
    • 那么这个模型的召回率为:80 / 100 = 80%
  • 召回率反映了分类模型中,所有的正例样本中有多大比例被正确识别出来。它反应了模型检测正例的全面能力。
  • 通俗解释
    • 假设班上有50个学生,其中10个学生的数学成绩很好。现在老师让所有学生做一份数学测试,结果有8个数学成绩好的学生通过了测试。
    • 那么此时,召回率 = 测试通过的数学好学生数量 / 全部数学好学生数量 = 8 / 10 = 80%
    • 召回率反映了在全部的“数学好学生”中,有多大比例通过了测试。

3、精度与召回的区别

  • 精度计算所有被预测为正例样本中,实际为正例样本的比例,反映了模型的精确度;召回计算所有实际为正例样本中,被正确预测为正例的比例,反映了模型的召回能力。
  • 精度倾向于惩罚假正例,召回倾向于惩罚漏报的正例。
  • 提高精度的方法是减少假正例,提高召回的方法是减少漏报正例。
  • 精度和召回往往存在权衡,精度提高时召回降低,反之亦然。评估模型效果时,需要同时考量精度和召回。
  • 在样本不平衡时,由于负例较多,仅考虑精度往往会忽视正例准确率,这时更关注召回。

相关文章:

自我理解:精度(precision)和召回(recall)

1、精度(precision) 精度是用于评估分类模型的一个重要指标。它反映了模型预测为正例的样本中,实际真正为正例样本的比例。 【注】正例样本指在二分类问题中,被标注为正类的样本。 例如:在垃圾邮件分类任务中,正例样本就是真实的…...

Nginx 使用 HTTPS(准备证书和私钥)

文章目录 Nginx生成自签名证书和配置Nginx HTTPS(准备证书和私钥)准备证书和私钥 Nginx生成自签名证书和配置Nginx HTTPS(准备证书和私钥) 准备证书和私钥 生成私钥 openssl genrsa -des3 -out server.key 2048这会生成一个加密…...

Java:集合框架:Set集合、LinkedSet集合、TreeSet集合、哈希值、HashSet的底层原理

Set集合 创建一个Set集合对象,因为Set是一个接口不能直接new一个对象,所以要用一个实现类来接 HashSet来接 无序性只有一次,只要第一次运行出来后,之后再运行的顺序还是第一次的顺序。 用LinkedSet来接 有序 不重复 无索引 用Tree…...

自定义Taro的navBar的宽度和高度

本方法是计算自定义navbar的宽度和高度,输出的参数有 navBarHeight, menuBottom,menuHeight, menuRectWidth,windowWidth, windowHeight,具体代码如下: export function getCustomNavBarRect():| {navBarHeight: number;menuBottom: number;menuHeight:…...

用Python编程实现百度自然语言处理接口的对接,助力你开发智能化处理程序

用Python编程实现百度自然语言处理接口的对接,助力你开发智能化处理程序 随着人工智能的不断进步,自然语言处理(Natural Language Processing,NLP)成为了解决文本处理问题的重要工具。百度自然语言处理接口提供了一系…...

系统架构设计专业技能 · 系统工程与系统性能

系列文章目录 系统架构设计专业技能 网络技术(三) 系统架构设计专业技能 系统安全分析与设计(四)【系统架构设计师】 系统架构设计高级技能 软件架构设计(一)【系统架构设计师】 系统架构设计高级技能 …...

初识网络原理(笔记)

目录 ​编辑局域网 网络通信基础 IP 地址 端口号 协议 协议分层 TCP / IP 五层网络模型 网络数据传输的基本流程 发送方的情况: 接收方的情况 局域网 搭建网络的时候,需要用到 交换机 和 路由器 路由器上,有 lan 口 和 wan 口 虽…...

嵌入式C语言基本操作方法之经典

C语言一经出现就以其功能丰富、表达能力强、灵活方便、应用面广等特点迅速在全世界普及和推广。 C语言不但执行效率高而且可移植性好,可以用来开发应用软件、驱动、操作系统等。 C语言也是其它众多高级语言的鼻祖语言,所以说学习C语言是进入编程世界的必…...

postgresql \watch实用的使用方法

文章目录 1.介绍2.语法3.实用的使用方法3.1 慢sql监控3.2 长wait事件3.3 日志输出量3.3结合pg_stat_database使用3.4 结合pg_stat_bgwriter使用3.5 其他 1.介绍 \watch Postgres 9.3 版带来的一个有用的命令,与linux watch指令类似,可以帮我们在指定间隔…...

Cocos2d 项目问题记录

环境搭建 正常运行 Android 端的 Cocos2d 项目,本机至少需要 Android SDK、NDK 环境、Android Studio 项目报错总结 CMake Error: CMake was unable to find a build program corresponding to "Ninja" 默认创建工程的 gradle.tools 版本为 3.1.0&…...

系统架构合理性的思考 | 京东云技术团队

最近牵头在梳理部门的系统架构合理性,开始工作之前,我首先想到的是如何定义架构合理性? 从研发的角度来看如果系统上下文清晰、应用架构设计简单、应用拆分合理应该称之为架构合理。 基于以上的定义可以从以下三个方面来梳理评估&#xff1…...

Amelia预订插件:WordPress企业级预约系统

并非所有WordPress预订插件都像他们所设计的那样。其中一些缺乏运行高效预约操作所需的功能,而其他一些则看起来陈旧过时。您不需要其中任何一个,但Amelia预订插件似乎希望确保所有用户都对功能和风格感到满意。 在这篇Amelia企业级预约系统插件评测中&…...

共享门店模式:线下门店的商家如何利用它增加客户

随着数字化时代的到来,商业模式正在不断创新与演变,而共享经济正成为引领这一变革的重要力量。在这个大背景下,共享门店模式作为共享经济的一种体现,正在逐渐走进人们的生活,并为商家和消费者带来了新的商机和体验。 共…...

实现矩阵地图与rviz地图重合

文章目录 一、rviz地图转换矩形地图(只能用于全局规划)二、在rviz上显示地图边界信息,可视化调整,实现重合(只能用于局部规划)一、rviz地图转换矩形地图(只能用于全局规划) 此方法矩形地图可能会与rviz地图不重合,通过改变偏移量x_offset,y_offset接近地图 可以将矩…...

设计模式十九:备忘录模式(Memento Pattern)

备忘录模式是一种行为型设计模式,它允许对象在不暴露其内部状态的情况下捕获和恢复其状态。该模式的主要目标是在不破坏封装性的前提下,实现对象状态的备份和恢复。备忘录模式常用于需要保存对象历史状态、撤销操作或者实现快照功能的情况。 备忘录模式…...

【题解】二叉搜索树与双向链表

二叉搜索树与双向链表 题目链接:二叉搜索树与双向链表 解题思路1:递归中序遍历 首先题目最后要求的是一个的递增的双向链表,而二叉搜索树也是一类非常有特色的树,它的根节点大于所有左侧的节点,同时又小于所有右侧的…...

【真实案例】解决后端接口调用偶尔超时问题

文章目录 背景分析代码分析二次日志分析排查Gateway服务解决解决办法1:添加重试机制解决办法2:优化网关内存分配解决办法3:调整OOM策略背景 项目从虚拟机迁移到k8s云原生平台(RainBond)后,发现偶尔会出现接口调用超时的问题。 统计了一下从上线到现在近一个月的调用失败…...

操作符详解(1)

1. 操作符分类: 算术操作符 移位操作符 位操作符 赋值操作符 单目操作符 关系操作符 逻辑操作符 条件操作符 逗号表达式 下标引用、函数调用和结构成员 2. 算术操作符 - * / % 1. 除了 % 操作符之外,其他的几个操作符可以作用于整数和浮点数。 2. 对…...

<指针进阶>指针数组和数组指针傻傻分不清?

✨Blog:🥰不会敲代码的小张:)🥰 🉑推荐专栏:C语言🤪、Cpp😶‍🌫️、数据结构初阶💀 💽座右铭:“記住,每一天都是一個新的開始&#x1…...

无代码集成飞书连接更多应用

场景描述: 基于飞书开放平台能力,无代码集成飞书连接更多应用,打通数据孤岛。通过Aboter可轻松搭建业务自动化流程,实现多个应用之间的数据连接。 支持包括飞书事件监听和接口调用的能力: 事件监听: 用…...

接口测试中缓存处理策略

在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

基于服务器使用 apt 安装、配置 Nginx

🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...