opencv-gpu版本编译(添加java支持,可选)实现硬解码
目录
- opencv gpu版本编译,实现硬解码,加速rtsp视频流读取
- 1、准备文件
- 2、复制 NVCUVID 头文件到 cuda 安装目录 include
- 3、安装相关依赖
- 4、 执行cmake
- 5、编译安装
- 6、测试
opencv gpu版本编译,实现硬解码,加速rtsp视频流读取
前置条件,显卡驱动,cuda 已安装
这里cuda安装路径为 /usr/local/cuda-11.2
1、准备文件
-
opencv-4.5.5
-
opencv_contrib-4.5.5
-
nucuvid
:官网下载
2、复制 NVCUVID 头文件到 cuda 安装目录 include
sudo cp cuviddec.h nvcuid.h nvEncodeAPI. /usr/local/cuda-11.2/include
3、安装相关依赖
- 执行
01_install_dependence.sh
#!/bin/bashsudo apt update
sudo apt upgrade#sudo apt install -y gcc-10 g++-10
sudo apt install -y build-essential cmake pkg-config yasm git checkinstall
sudo apt install -y pkg-config yasm checkinstall
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev
sudo apt install -y libxvidcore-dev x264 libx264-dev libfaac-dev libmp3lame-dev libtheora-dev
sudo apt install -y libfaac-dev libmp3lame-dev libvorbis-dev
sudo apt install -y libgtkglext1 libgtkglext1-dev
sudo apt-get install -y libavresample-dev libdc1394-22 libdc1394-22-dev libxine2-dev libv4l-dev v4l-utils
4、 执行cmake
- 执行
02_install_opencv.sh
cd opencv_build
#unzip opencv.zip
#unzip opencv_contrib.zipecho "Moving onto the build portion of things"
cd opencv-4.5.5
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \-D CMAKE_C_COMPILER=/usr/bin/gcc-9 \-D CMAKE_INSTALL_PREFIX=../install_dir \-D OPENCV_GENERATE_PKGCONFIG=ON \-D BUILD_opencv_python3=ON \-D CUDA_ARCH_BIN=8.6\-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D OPENCV_DNN_CUDA=ON \-D ENABLE_FAST_MATH=1 \-D CUDA_FAST_MATH=1 \-D OPENCV_ENABLE_NONFREE=ON \-D WTIH_CUBLAS=1 \-D WITH_V4L=ON \-D WITH_NVCUVID=ON \-D WITH_OPENGL=ON \-D WITH_FFMPEG=ON \-D BUILD_opencv_java=ON \-D OPENCV_EXTRA_MODULES_PATH=~/opencv_project/opencv_build/opencv_contrib-4.5.5/modules ..echo "Configuring build & making OpenCV"
echo 'finished all the shit'
需要注意的地方:
-
-D CMAKE_INSTALL_PREFIX=../install_dir
:安装路径 -
-D CUDA_ARCH_BIN=8.6
: 显卡算力 -
-D WITH_CUDA=ON
:启用CUDA支持 -
-D WITH_CUDNN=ON
:启用CUDNN支持 -
-D OPENCV_DNN_CUDA=ON
:启用CUDA加速的深度学习模块 -
-D WITH_NVCUVID=ON
:启用NVCUVID支持,允许OpenCV在NVIDIA GPU上解码视频。 -
-D BUILD_opencv_java=ON
: 启用 java 支持,需要先配置好java环境变量(jdk,ant),可选项
cmake 执行完成
--
-- OpenCV modules:
-- To be built: alphamat aruco barcode bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev datasets dnn dnn_objdetect dnn_superres dpm face features2d flann freetype fuzzy gapi hfs highgui img_hash imgcodecs imgproc intensity_transform java line_descriptor mcc ml objdetect optflow phase_unwrapping photo plot quality rapid reg rgbd saliency shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab wechat_qrcode xfeatures2d ximgproc xobjdetect xphoto
-- Disabled: world
-- Disabled by dependency: -
-- Unavailable: cvv hdf julia matlab ovis python2 python3 sfm viz
-- Applications: tests perf_tests apps
-- Documentation: NO
-- Non-free algorithms: YES
--
-- GUI: GTK2
-- GTK+: YES (ver 2.24.32)
-- GThread : YES (ver 2.64.6)
-- GtkGlExt: YES (ver 1.2.0)
-- OpenGL support: YES (/usr/lib/x86_64-linux-gnu/libGL.so /usr/lib/x86_64-linux-gnu/libGLU.so)
-- VTK support: NO
--
-- Media I/O:
-- ZLib: /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.11)
-- JPEG: /usr/lib/x86_64-linux-gnu/libjpeg.so (ver 80)
-- WEBP: build (ver encoder: 0x020f)
-- PNG: /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.6.37)
-- TIFF: /usr/lib/x86_64-linux-gnu/libtiff.so (ver 42 / 4.1.0)
-- JPEG 2000: build (ver 2.4.0)
-- OpenEXR: /usr/lib/x86_64-linux-gnu/libImath.so /usr/lib/x86_64-linux-gnu/libIlmImf.so /usr/lib/x86_64-linux-gnu/libIex.so /usr/lib/x86_64-linux-gnu/libHalf.so /usr/lib/x86_64-linux-gnu/libIlmThread.so (ver 2_3)
-- HDR: YES
-- SUNRASTER: YES
-- PXM: YES
-- PFM: YES
--
-- Video I/O:
-- DC1394: YES (2.2.5)
-- FFMPEG: YES
-- avcodec: YES (58.54.100)
-- avformat: YES (58.29.100)
-- avutil: YES (56.31.100)
-- swscale: YES (5.5.100)
-- avresample: YES (4.0.0)
-- GStreamer: YES (1.16.3)
-- v4l/v4l2: YES (linux/videodev2.h)
--
-- Parallel framework: pthreads
--
-- Trace: YES (with Intel ITT)
--
-- Other third-party libraries:
-- Intel IPP: 2020.0.0 Gold [2020.0.0]
-- at: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build/3rdparty/ippicv/ippicv_lnx/icv
-- Intel IPP IW: sources (2020.0.0)
-- at: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build/3rdparty/ippicv/ippicv_lnx/iw
-- VA: NO
-- Lapack: NO
-- Eigen: YES (ver 3.3.9)
-- Custom HAL: NO
-- Protobuf: build (3.19.1)
--
-- NVIDIA CUDA: YES (ver 11.2, CUFFT CUBLAS NVCUVID FAST_MATH)
-- NVIDIA GPU arch: 86
-- NVIDIA PTX archs:
--
-- cuDNN: YES (ver 8.6.0)
--
-- OpenCL: YES (no extra features)
-- Include path: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/3rdparty/include/opencl/1.2
-- Link libraries: Dynamic load
--
-- Python 3:
-- Interpreter: /usr/bin/python3 (ver 3.8.10)
-- Libraries: NO
-- numpy: NO (Python3 wrappers can not be generated)
-- install path: -
--
-- Python (for build): /usr/bin/python3
--
-- Java:
-- ant: /usr/local/apache-ant-1.10.13/bin/ant (ver 1.10.13)
-- JNI: /usr/lib/jvm/jdk1.8.0_361/include /usr/lib/jvm/jdk1.8.0_361/include/linux /usr/lib/jvm/jdk1.8.0_361/include
-- Java wrappers: YES
-- Java tests: YES
--
-- Install to: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/install_dir
-- -----------------------------------------------------------------
--
-- Configuring done
-- Generating done
-- Build files have been written to: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build
Configuring build & making OpenCV
finished all the shit
- gpu 加速开启成功
- java 支持开启成功
5、编译安装
-
进入cmake创建的build目录
cd opencv_build/opencv-4.5.5/build#编译,根据电脑核心数选择合适线程 make -j30
-
安装
make install
6、测试
-
进入目录
opencv_gpu_test
,编译执行程序,在CMakeLIsts.txt中修改opencv的安装路径cd build make ./opencv_test
-
CMakeLIsts.txt
cmake_minimum_required(VERSION 3.0.2) project(opencv_test) SET(CMAKE_BUILD_TYPE "Release")# 安装路径 find_package(OpenCV 4.5.5 REQUIRED PATHS /home/lenovo/opencv_project/opencv_build/opencv-4.5.5/install_dir)include_directories(${OpenCV_INCLUDE_DIRS})add_executable(opencv_test test.cc ) #add_executable( opencv_test gpu_mat.cpp ) target_link_libraries( opencv_test${OpenCV_LIBRARIES}/usr/lib/x86_64-linux-gnu)
-
test.cc
#include <iostream> #include <string> #include <vector> #include <algorithm> #include <numeric> #include "opencv2/opencv_modules.hpp" #include <opencv2/core/utility.hpp> #include <opencv2/core.hpp> #include <opencv2/core/opengl.hpp> #include <opencv2/cudacodec.hpp> #include <opencv2/highgui.hpp>int main(int argc, const char* argv[]) {//std::cout<<cv::getBuildInformation()<<std::endl;//将这个流改成你自己的const std::string fname = "rtsp://admin:abcd1234@192.168.1.110:554/smart264/ch1/main/av_stream";const std::string gfname = "rtsp://admin:abcd1234@192.168.1.110:554/Streaming/Channels/2";std::cout<<"Set device...."<<std::endl;int numDevice = cv::cuda::getCudaEnabledDeviceCount();std::cout<<"device count: "<<numDevice<<std::endl;int cudaDevice = 0;cv::cuda::setDevice(cudaDevice);//cv::cuda::setGlDevice(cudaDevice);//cv::cuda::setGlDevice(1);std::cout<<"read rtsp through cpu..."<<std::endl;cv::Mat frame;cv::VideoCapture reader(fname);cv::cuda::GpuMat d_frame;std::cout<<"read rtsp through cuda..."<<std::endl;cv::Ptr<cv::cudacodec::VideoReader> d_reader = cv::cudacodec::createVideoReader(fname);cv::TickMeter tm;std::vector<double> cpu_times;std::vector<double> gpu_times;std::cout<<"test"<<std::endl;for (int i = 0;i<500;i++){tm.reset(); tm.start();if (!reader.read(frame))break;tm.stop();cpu_times.push_back(tm.getTimeMilli());tm.reset(); tm.start();if (!d_reader->nextFrame(d_frame))break;tm.stop();gpu_times.push_back(tm.getTimeMilli());}if (!cpu_times.empty() || !gpu_times.empty()){std::cout << std::endl << "Results:" << std::endl;//std::sort(cpu_times.begin(), cpu_times.end());std::sort(gpu_times.begin(), gpu_times.end());//double cpu_avg = std::accumulate(cpu_times.begin(), cpu_times.end(), 0.0) / cpu_times.size();double gpu_avg = std::accumulate(gpu_times.begin(), gpu_times.end(), 0.0) / gpu_times.size();//std::cout << "CPU : Avg : " << cpu_avg << " ms FPS : " << 1000.0 / cpu_avg << std::endl;std::cout << "GPU : Avg : " << gpu_avg << " ms FPS : " << 1000.0 / gpu_avg << std::endl;}return 0; } // #endif
-
结果如下安装成功
相关文章:
opencv-gpu版本编译(添加java支持,可选)实现硬解码
目录 opencv gpu版本编译,实现硬解码,加速rtsp视频流读取1、准备文件2、复制 NVCUVID 头文件到 cuda 安装目录 include3、安装相关依赖4、 执行cmake5、编译安装6、测试 opencv gpu版本编译,实现硬解码,加速rtsp视频流读取 前置条…...
数据分析问答总结
一、SQL窗口函数 1.是什么 OLAP(Online Anallytical Processing联机分析处理),对数据库数据进行实时分析处理。 2.基本语法: <窗口函数>OVER (PARTITION BY <用于分组的列名> ORDER BY <用于排序的…...
Python学习笔记_实战篇(二)_django多条件筛选搜索
多条件搜索在很多网站上都有用到,比如京东,淘宝,51cto,等等好多购物教育网站上都有,当然网上也有很多开源的比楼主写的好的多了去了,仅供参考,哈哈 先来一张效果图吧,不然幻想不出来…...
【生态经济学】利用R语言进行经济学研究技术——从数据的收集与清洗、综合建模评价、数据的分析与可视化、因果推断等方面入手
查看原文>>>如何快速掌握利用R语言进行经济学研究技术——从数据的收集与清洗、综合建模评价、数据的分析与可视化、因果推断等方面入手 近年来,人工智能领域已经取得突破性进展,对经济社会各个领域都产生了重大影响,结合了统计学、…...
xml中的vo是干什么用的
在Java中,VO(Value Object)是一种常见的设计模式,用于表示纯粹的数据对象。VO 通常用于在不同层或模块之间传递数据,并且它们的主要目的是封装和组织数据,而不包含业务逻辑。 VO 在Java中的具体作用有以下…...
现代企业数据泄露的原因分析与建议
近年来,随着信息技术的飞速发展,数据已经成为现代企业不可或缺的发展资源。然而,随之而来的数据泄露危机,给个人、企业甚至整个社会带来了巨大的风险与威胁。本文将综合探讨企业数据泄露的主要途径和原因,并提出防护建…...
飞天使-kubeadm安装一主一从集群
文章目录 安装前准备安装前准备配置yum源等安装前准备docker安装 安装kubeadm配置kubeadm验证集群 参考链接 安装前准备 cat >> /etc/hosts <<EOF 192.168.100.30 k8s-01 192.168.100.31 k8s-02 EOF hostnamectl set-hostname k8s-01 #所有机器按照要求修改 ho…...
string类写时拷贝
文章目录 1.string类拷贝构造函数的现代写法2.string类写时拷贝vs和g下string结构的不同vs下string的结构:g下string的结构 3.总结 1.string类拷贝构造函数的现代写法 string类拷贝构造函数的传统写法: string(const string& s){if (this ! &s)…...
QT VS编译环境无法打开包括文件type_traits
这问题,别人给的处理方法都是: 添加环境变量执行vsvars32.bat/vcvarsall.bat/vsdevcmd.bat重新安装QT项目:执行qmake。。。。 个人不推荐配置环境编译,除非你非常熟,因为配置环境变量需要你知道有哪些路径需要添加&a…...
深入浅出 TCP/IP 协议栈
TCP/IP 协议栈是一系列网络协议的总和,是构成网络通信的核心骨架,它定义了电子设备如何连入因特网,以及数据如何在它们之间进行传输。TCP/IP 协议采用4层结构,分别是应用层、传输层、网络层和链路层,每一层都呼叫它的下…...
Servlet+JDBC实战开发书店项目讲解第13讲:库存管理功能
ServletJDBC实战开发书店项目讲解第13讲:库存管理功能 在第13讲中,我们将讲解如何实现书店项目中的库存管理功能。该功能包括图书的添加、编辑、删除和查询等核心功能。下面是实现该功能的主要思路: 显示库存列表: 创建一个管理页…...
Shepherd: A Critic for Language Model Generation
本文是LLM系列的相关文章,针对《Shepherd: A Critic for Language Model Generation》的翻译。 Shepherd:语言模型生成的评价 摘要1 引言2 数据收集3 Shepherd模型4 评估反馈5 结果6 相关工作7 结论不足 摘要 随着大型语言模型的改进,人们对…...
【Python爬虫案例】爬取大麦网任意城市的近期演出!
老规矩,先上结果: 含10个字段: 页码,演出标题,链接地址,演出时间,演出城市,演出地点,售价,演出类别,演出子类别,售票状态。 代码演示…...
【框架】SpringBoot数组传参问题
方式一 前端以字符串形式传递idList,采用逗号拼接,后端直接使用list接收 // 前端代码 form: {otherParam: ,idList: [id1,id2].join(,) }//后端代码 // 在后端接收idList时,直接使用List<T> 就可以接收前端字符串(默认使用…...
四川天蝶电子商务:2023短视频运营分析
短视频运营分析是指通过对短视频平台上的各种数据进行收集、整理和分析,以寻找出视频内容、用户活跃度、用户行为等方面的规律和问题,从而为短视频平台的运营决策提供依据。下面将从几个方面具体介绍短视频运营分析的重要性和方法。 首先,短…...
Git(5)已有项目连接远端git仓库
文章目录 初始化git连接远程仓库拉下仓库代码添加代码到本地仓库删除idea配置的git本地缓存提交代码推上去 初始化git git init连接远程仓库 git remote add origin 你的仓库地址拉下仓库代码 git pull --rebase origin master添加代码到本地仓库 git add .删除idea配置的g…...
Datawhale Django 后端开发入门 Task05 DefaultRouter、自定义函数
一、DefaultRouter是Django REST framework中提供的一个路由器类,用于自动生成URL路由。路由器是将URL与视图函数或视图集关联起来的一种机制。Django REST framework的路由器通过简单的配置可以自动生成标准的URL路由,从而减少了手动编写URL路由的工作量…...
JVM的元空间了解吗?
笔者近期在面试的时候被问到了这个问题,元空间也是Java8当时的一大重大革新,之前暑期实习求职的时候有专门看过,但是近期秋招的时候JVM相关的内容确实有点生疏了,故在此进行回顾。 结构 首先,我们应了解JVM的堆结构&a…...
WPS中的表格错乱少行
用Office word编辑的文档里面包含表格是正常的,但用WPS打开里面的表格就是错乱的,比如表格位置不对,或者是表格的前几行无法显示、丢失了。 有一种可能的原因是: 表格属性里面的文字环绕选成了“环绕”而非“无”,改…...
Pytorch-day09-模型微调-checkpoint
模型微调(fine-tune)-迁移学习 torchvision微调timm微调半精度训练 起源: 1、随着深度学习的发展,模型的参数越来越大,许多开源模型都是在较大数据集上进行训练的,比如Imagenet-1k,Imagenet-11k等2、如果…...
leetcode304. 二维区域和检索 - 矩阵不可变(java)
前缀和数组 二维区域和检索 - 矩阵不可变题目描述前缀和代码演示 一维数组前缀和 二维区域和检索 - 矩阵不可变 难度 - 中等 原题链接 - 二维区域和检索 - 矩阵不可变 题目描述 给定一个二维矩阵 matrix,以下类型的多个请求: 计算其子矩形范围内元素的总…...
记一次oracle数据库迁移至mysql数据库(表同步)
目录 一、利用Navicat将oracle迁移至mysql数据库 1、建立数据传输 2、选择需要迁移的数据库跟目标库 3、数据传输选项 4、选择需要迁移表信息 二、迁移之后遇到的一些问题 1、大小写问题 2、数据库函数问题 3、sql语句是否使用空格隔开问题 4、关于子查询别命名问题 …...
打怪升级之从零开始的网络协议
序言 三个多月过去了,我又来写博客了,这一次从零开始学习网络协议。 总的来说,计算机网络很像现实生活中的快递网络,其最核心的目标,就是把一个包裹(信息)从A点发送到B点去。下面是一些共同的…...
Lnton羚通算法算力云平台【PyTorch】教程:torch.nn.Softsign
torch.nn.Softsign 原型 CLASS torch.nn.Softsign() 图 代码 import torch import torch.nn as nnm nn.Softsign() input torch.randn(4) output m(input)print("input: ", input) print("output: ", output)# input: tensor([ 0.0046, -0.4135, -2…...
读SQL学习指南(第3版)笔记02_数据类型
1. 命令行工具 1.1. mysql -u root -p; 1.2. mysql> show databases; 1.3. mysql> use sakila; 1.4. mysql> SELECT now(); 1.4.1. now()是MySQL的内建函数 1.4.2. 返回当前日期和时间 1.5. mysql> SELECT now() FROM dual…...
易思智能物流无人值守系统文件上传漏洞复现
0x01 产品简介 易思无人值守智能物流系统是一款集成了人工智能、机器人技术和物联网技术的创新产品。它能够自主完成货物存储、检索、分拣、装载以及配送等物流作业,帮助企业实现无人值守的智能物流运营,提高效率、降低成本,为现代物流行业带…...
git获取远端分支和merge
要将远程分支拉取到本地,你可以使用以下命令: 1. 首先,使用git fetch命令从远程仓库获取最新的分支信息: git fetch origin 这个命令将会将远程仓库origin的分支信息下载到本地。 2. 接下来,可以使用git checkout命…...
linux-进程
文章目录 1.先谈硬件冯诺依曼体系结构 2.再谈软件操作系统什么是操作系统?为什么要有操作系统?如何管理?系统调用 3.再谈进程那么具体Linux是怎么做的?指令 ps ajx 查看所有进程 非实时top 实时查看进程 相当于任务管理器ls /proc 内存级进程…...
整数数组区间的插入与删除
相似题参考: 56. Merge Intervals - 力扣(LeetCode)合并区间 57. 插入区间 - 力扣(LeetCode) 1272. 删除区间 package Jerry;import org.junit.Assert; import org.junit.Test;import java.util.ArrayList; import…...
Git标签
Git 中的标签,指的是某个分支某个特定时间点的状态(静态)。通过标签,可以很方便的切换到标记时的状态。 比较有代表性的是人们会使用这个功能来标记发布结点 (v1.0、v1.2等)。 下面是myatis-plus的标签: 1 标签相关命令 命令作用git tag查看标签&…...
酒店设计网站建设方案/合肥网络推广
RxJava2初步使用 转载于:https://www.cnblogs.com/annieBaby/p/6800513.html...
网站维护托管要多少钱/专业seo站长工具
2021-10-09每日刷题打卡 力扣——链表 92. 反转链表 II 给你单链表的头指针 head 和两个整数 left 和 right ,其中 left < right 。请你反转从位置 left 到位置 right 的链表节点,返回 反转后的链表 。 示例 1: 输入:head …...
wordpress禁用react/郑州网站推广优化
一、首先说一下,Hadoop有三种运行模式。 第一个是独立(或本地)运行模式:无需运行任何守护进程,所有程序都在一个同一个JVM上执行。 第二个是伪分布模式:Hadoop守护进程运行在本地机器上,模拟一个小规模的集群。 第三个…...
免费发布项目的网站/潍坊网站建设优化
本文作者来自中科院,文章被收录于IJCAI 2019。当前基于邻域聚集的GCN模型大多数是浅层的,并且缺乏“图池化”机制,这使得模型无法获得足够的全局信息。为了增加感受域,本文提出了一种深层层次图卷积网络(H-GCN),H-GCN首先将结构相似的节点重复聚集到超节点,然后将粗化后…...
网站建设 南宁/网络推广100种方式
20172303 2017-2018-2 《程序设计与数据结构》第9周学习总结 教材学习内容总结 第十一章 异常 1.异常 异常处理 异常处理的常用方法有三种: 根本不处理当异常发生时处理异常在程序的某个位置集中处理异常处理异常的主要方法是捕获异常异常捕获——try-catch语句 格式…...
网站视觉风格/需要一个网站
概要:Oracle关系数据库系统以其卓越的性能获得了广泛的应用,而保证数据库的安全性 是数据库管理工作的重要内容。本文是笔者在总结Oracle数据库安全管理工作的基础上,对Oracle数据库系统密码文件的创建、使用和维护作了详细的介绍,…...