当前位置: 首页 > news >正文

计算机竞赛 卷积神经网络手写字符识别 - 深度学习

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 卷积神经网络手写字符识别 - 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于毕业设计。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。

#!/usr/bin/env python2# -*- coding: utf-8 -*-"""@author: 丹成学长 Q746876041"""#import modulesimport numpy as npimport matplotlib.pyplot as plt#from sklearn.metrics import confusion_matriximport tensorflow as tfimport timefrom datetime import timedeltaimport mathfrom tensorflow.examples.tutorials.mnist import input_datadef new_weights(shape):return tf.Variable(tf.truncated_normal(shape,stddev=0.05))def new_biases(length):return tf.Variable(tf.constant(0.1,shape=length))def conv2d(x,W):return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(inputx):return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#import datadata = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2print("Size of:")print("--Training-set:\t\t{}".format(len(data.train.labels)))print("--Testing-set:\t\t{}".format(len(data.test.labels)))print("--Validation-set:\t\t{}".format(len(data.validation.labels)))data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000valuesx = tf.placeholder("float",shape=[None,784],name='x')x_image = tf.reshape(x,[-1,28,28,1])y_true = tf.placeholder("float",shape=[None,10],name='y_true')y_true_cls = tf.argmax(y_true,dimension=1)# Conv 1layer_conv1 = {"weights":new_weights([5,5,1,32]),"biases":new_biases([32])}h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])h_pool1 = max_pool_2x2(h_conv1)# Conv 2layer_conv2 = {"weights":new_weights([5,5,32,64]),"biases":new_biases([64])}h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])h_pool2 = max_pool_2x2(h_conv2)# Full-connected layer 1fc1_layer = {"weights":new_weights([7*7*64,1024]),"biases":new_biases([1024])}h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])# Droupout Layerkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)# Full-connected layer 2fc2_layer = {"weights":new_weights([1024,10]),"biases":new_weights([10])}# Predicted classy_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'# cost function to be optimizedcross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)# Performance Measurescorrect_prediction = tf.equal(y_pred_cls,y_true_cls)accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)train_batch_size = 50def optimize(num_iterations):total_iterations=0start_time = time.time()for i in range(total_iterations,total_iterations+num_iterations):x_batch,y_true_batch = data.train.next_batch(train_batch_size)feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}sess.run(optimizer,feed_dict=feed_dict_train_op)# Print status every 100 iterations.if i%100==0:# Calculate the accuracy on the training-set.acc = sess.run(accuracy,feed_dict=feed_dict_train)# Message for printing.msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"# Print it.print(msg.format(i+1,acc))# Update the total number of iterations performedtotal_iterations += num_iterations# Ending timeend_time = time.time()# Difference between start and end_times.time_dif = end_time-start_time# Print the time-usageprint("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))test_batch_size = 256def print_test_accuracy():# Number of images in the test-set.num_test = len(data.test.images)cls_pred = np.zeros(shape=num_test,dtype=np.int)i = 0while i < num_test:# The ending index for the next batch is denoted j.j = min(i+test_batch_size,num_test)# Get the images from the test-set between index i and jimages = data.test.images[i:j, :]# Get the associated labelslabels = data.test.labels[i:j, :]# Create a feed-dict with these images and labels.feed_dict={x:images,y_true:labels,keep_prob:1.0}# Calculate the predicted class using Tensorflow.cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)# Set the start-index for the next batch to the# end-index of the current batchi = jcls_true = data.test.clscorrect = (cls_true==cls_pred)correct_sum = correct.sum()acc = float(correct_sum) / num_test# Print the accuracymsg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"print(msg.format(acc,correct_sum,num_test))# Performance after 10000 optimization iterationsoptimize(num_iterations=10000)print_test_accuracy()savew_hl1 = layer_conv1["weights"].eval()saveb_hl1 = layer_conv1["biases"].eval()savew_hl2 = layer_conv2["weights"].eval()saveb_hl2 = layer_conv2["biases"].eval()savew_fc1 = fc1_layer["weights"].eval()saveb_fc1 = fc1_layer["biases"].eval()savew_op = fc2_layer["weights"].eval()saveb_op = fc2_layer["biases"].eval()np.save("savew_hl1.npy", savew_hl1)np.save("saveb_hl1.npy", saveb_hl1)np.save("savew_hl2.npy", savew_hl2)np.save("saveb_hl2.npy", saveb_hl2)np.save("savew_hl3.npy", savew_fc1)np.save("saveb_hl3.npy", saveb_fc1)np.save("savew_op.npy", savew_op)np.save("saveb_op.npy", saveb_op)

运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

计算机竞赛 卷积神经网络手写字符识别 - 深度学习

文章目录 0 前言1 简介2 LeNet-5 模型的介绍2.1 结构解析2.2 C1层2.3 S2层S2层和C3层连接 2.4 F6与C5层 3 写数字识别算法模型的构建3.1 输入层设计3.2 激活函数的选取3.3 卷积层设计3.4 降采样层3.5 输出层设计 4 网络模型的总体结构5 部分实现代码6 在线手写识别7 最后 0 前言…...

[Go版]算法通关村第十三关白银——数组实现加法和幂运算

目录 数组实现加法专题题目&#xff1a;数组实现整数加法思路分析&#xff1a;复杂度&#xff1a;Go代码 题目&#xff1a;字符串加法思路分析&#xff1a;复杂度&#xff1a;Go代码 题目&#xff1a;二进制加法思路分析&#xff1a;复杂度&#xff1a;Go代码 幂运算专题题目&a…...

React笔记[tsx]-解决Property ‘frames‘ does not exist on type ‘Readonly<{}>‘

浏览器报错如下&#xff1a; 编辑器是这样的&#xff1a; 原因是React.Component<any>少了后面的any&#xff0c;改成这样即可&#xff1a; export class CustomFrame extends React.Component<any, any>{............ }...

ThinkPHP6.0+ 使用Redis 原始用法

composer 安装 predis/predis 依赖&#xff0c;或者安装php_redis.dll的扩展。 我这里选择的是predis/predis 依赖。 composer require predis/predis 进入config/cache.php 配置添加redis缓存支持 示例&#xff1a; <?php// -----------------------------------------…...

SRM系统询价竞价管理:优化采购流程的全面解析

SRM系统的询价竞价管理模块是现代企业采购管理中的重要工具。通过该模块&#xff0c;企业可以实现供应商的询价、竞价和合同管理等关键环节的自动化和优化。 一、概述 SRM系统是一种用于管理和优化供应商关系的软件系统。它通过集成各个环节&#xff0c;包括供应商信息管理、询…...

c++选择题笔记

局部变量能否和全局变量重名&#xff1f;可以&#xff0c;局部变量会屏蔽全局变量。在使用全局变量时需要使用 ":: "。拷贝构造函数&#xff1a;参数为同类型的对象的常量引用的构造函数函数指针&#xff1a;int (*f)(int,int) & max; 虚函数&#xff1a;在基类…...

Android2:构建交互式应用

一。创建项目 项目名Beer Adviser 二。更新布局 activity_main.xml <?xml version"1.0" encoding"utf-8"?><LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"…...

ChatGLM-6B微调记录

目录 GLM-130B和ChatGLM-6BChatGLM-6B直接部署基于PEFT的LoRA微调ChatGLM-6B GLM-130B和ChatGLM-6B 对于三类主要预训练框架&#xff1a; autoregressive&#xff08;无条件生成&#xff09;&#xff0c;GPT的训练目标是从左到右的文本生成。autoencoding&#xff08;语言理解…...

Linux Kernel 4.12 或将新增优化分析工具

到 7 月初&#xff0c;Linux Kernel 4.12 预计将为修复所有安全漏洞而奠定基础&#xff0c;另外新增的是一个分析工具&#xff0c;对于开发者优化启动时间时会有所帮助。 新的「个别任务统一模型」&#xff08;Per-Task Consistency Model&#xff09;为主要核心实时修补&#…...

【30天熟悉Go语言】10 Go异常处理机制

作者&#xff1a;秃秃爱健身&#xff0c;多平台博客专家&#xff0c;某大厂后端开发&#xff0c;个人IP起于源码分析文章 &#x1f60b;。 源码系列专栏&#xff1a;Spring MVC源码系列、Spring Boot源码系列、SpringCloud源码系列&#xff08;含&#xff1a;Ribbon、Feign&…...

飞机打方块(四)游戏结束

一、游戏结束显示 1.新建节点 1.新建gameover节点 2.绑定canvas 3.新建gameover容器 4.新建文本节点 2.游戏结束逻辑 Barrier.ts update(dt: number) {//将自身生命值取整let num Math.floor(this.num);//在Label上显示this.num_lb.string num.toString();//获取GameCo…...

保研之旅1:西北工业大学电子信息学院夏令营

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; 本人持续分享更多关于电子通信专业内容以及嵌入式和单片机的知识&#xff0c;如果大家喜欢&#xff0c;别忘点个赞加个关注哦&#xff0c;让我们一起共同进步~ &#x…...

[WMCTF 2023] crypto

似乎退步不了&#xff0c;这个比赛基本不会了&#xff0c;就作了两个简单题。 SIGNIN 第1个是签到题 from Crypto.Util.number import * from random import randrange from secret import flagdef pr(msg):print(msg)pr(br"""........ …...

图像分割unet系列------TransUnet详解

图像分割unet系列------TransUnet详解 1、TransUnet结构2、我关心的问题3、总结与展望TransUnet发表于2021年,它是对UNet非常重要的改进,专为医学图像分割任务设计,特别用于在医学图像中分割器官或病变等解剖结构。 1、TransUnet结构 TransUNet在U-Net模型的基础上引入了混合…...

ASCII码-shellcode的技巧

网上已经有成熟的工具了&#xff0c;所以就简单记录一下工具怎么用吧 https://github.com/TaQini/alpha3 https://github.com/veritas501/ae64.git https://github.com/rcx/shellcode_encoder 结合题目来看吧&#xff0c;没有开启NX保护&#xff0c;基本这类型题目九成九都…...

spring cloud 之 dubbo nacos整合

整体思路&#xff1a; 搭建本地nacos服务&#xff0c;详见docker安装nacos_xgjj68163的博客-CSDN博客 共三个工程&#xff0c;生产者服务、消费者服务、生产者和消费者共同依赖的接口工程&#xff08;打成jar&#xff0c;供生产者和消费者依赖&#xff09;&#xff1b; …...

MySQL如何进行表之间的关联更新

在实际编程工作或运维实践中&#xff0c;对MySQL数据库表进行关联更新是一种比较常见的应用场景&#xff0c;比如在电商系统中&#xff0c;订单表里保存了商品名称的信息&#xff08;冗余字段设计&#xff09;&#xff0c;但如果商品名称发生变化&#xff0c;则需要通过关联商品…...

Docker创建 LNMP 服务+Wordpress 网站平台

Docker创建 LNMP 服务Wordpress 网站平台 一.环境及准备工作 1.项目环境 公司在实际的生产环境中&#xff0c;需要使用 Docker 技术在一台主机上创建 LNMP 服务并运行 Wordpress 网站平台。然后对此服务进行相关的性能调优和管理工作。 容器 系统 IP地址 软件 nginx centos…...

node没有自动安装npm时,如何手动安装 npm

之前写过一篇使用 nvm 管理 node 版本的文章&#xff0c;node版本管理&#xff08;Windows&#xff09; 有时候&#xff0c;我们使用 nvm 下载 node 时&#xff0c;node 没有自动下载 npm &#xff0c;此时就需要我们自己手动下载 npm 1、下载 npm下载地址&#xff1a;&…...

C# 使用递归方法实现汉诺塔步数计算

C# 使用递归方法实现汉诺塔步数计算 Part 1 什么是递归Part 2 汉诺塔Part 3 程序 Part 1 什么是递归 举一个例子&#xff1a;计算从 1 到 x 的总和 public int SumFrom1ToX(int x) {if(x 1){return 1;}else{int result x SumFrom1ToX_2(x - 1); // 调用自己return result…...

窗口函数大揭秘!轻松计算数据累计占比,玩转数据分析的绝佳利器

上一篇文章《如何用窗口函数实现排名计算》中小编为大家介绍了窗口函数在排名计算场景中的应用&#xff0c;但实际上窗口函数除了可以进行单行计算&#xff0c;还可以在每行上打开一个指定大小的计算窗口&#xff0c;这个计算窗口可以由SQL中的语句具体指定&#xff0c;大到整个…...

健康检测智能睡眠床垫方案

《2022中国睡眠质量调查报告》调查结果显示&#xff0c;16&#xff05;的被调查者存在夜间睡眠时间不足6个小时&#xff0c;表现为24点以后才上床睡觉&#xff0c;并且在6点之前起床&#xff1b;有83.81&#xff05;的被调查者经常受到睡眠问题困扰&#xff0c;其中入睡困难占2…...

计网第三章(数据链路层)(五)

目录 一、以太网交换机自学习和转发帧的过程 1.两层交换机和三层交换机 2.以太网交换机的基本原理 3.具体实现过程 一、以太网交换机自学习和转发帧的过程 1.两层交换机和三层交换机 大家可能注意到平常做题时有叫两层交换机&#xff0c;或者三层交换机的。 两层交换机就…...

嵌入式系统中常见内存的划分方法

看到有小伙伴在讨论关于单片机内存的话题&#xff0c;今天就结合STM32给大家描述一下常见的划分区域。 在一个STM32程序代码中&#xff0c;从内存高地址到内存低地址&#xff0c;依次分布着栈区、堆区、全局区&#xff08;静态区&#xff09;、常量区、代码区&#xff0c;其中全…...

深入理解与实现:常见搜索算法的Java示例

深入理解与实现&#xff1a;常见搜索算法的Java示例 搜索算法在计算机科学中扮演着重要角色&#xff0c;用于在数据集中查找特定元素或解决问题。在本篇博客中&#xff0c;我们将深入探讨图算法的一个重要分支&#xff1a;图的搜索算法。具体而言&#xff0c;我们将介绍图的深…...

PHP自己的框架实现操作成功失败跳转(完善篇四)

1、实现效果&#xff0c;操作成功后失败成功自动跳转 2、创建操作成功失败跳转方法CrlBase.php /**成功后跳转*跳转地址$url* 跳转显示信息$msg* 等待时间$wait* 是否自动跳转$jump*/protected function ok($urlNULL,$msg操作成功,$wait3,$jump1){$code1;include KJ_CORE./tp…...

【汇编语言】CS、IP寄存器

文章目录 修改CS、IP的指令转移指令jmp问题分析 修改CS、IP的指令 理论&#xff1a;CPU执行何处的指令&#xff0c;取决于CS:IP应用&#xff1a;程序员可以通过改变CS、IP中的内容&#xff0c;进行控制CPU即将要执行的目标指令&#xff1b;问题&#xff1a;如何改变CS、IP中的…...

Nvidia Jetson 编解码开发(3)解决H265解码报错“PPS id out of range”

1.问题描述 基于之前的开发程序 Nvidia Jetson 编解码开发(2)Jetpack 4.x版本Multimedia API 硬件编码开发--集成encode模块_free-xx的博客-CSDN博客 通过Jetson Xavier NX 硬编码的H265发出后, 上位机断点播放发出来的H265码流, 会报“PPS id out of range” 错误 …...

Angular中如何获取URL参数?

Angular中的ActivatedRoute中保存着路由信息&#xff0c;可用来提取URL中的路由参数。 constructor(private route: ActivatedRoute){}ngOnInit(): void {this.getUser();}getUser(): void {const id this.route.snapshot.paramMap.get(id);} }route.snapshot是一个路由信息的…...

uniapp编写微信小程序和H5遇到的坑总结

uniapp编写微信小程序和H5遇到的坑总结 1、阻止事件冒泡2、二维码生成3、H5跨域配置4、H5时&#xff0c;地址栏上添加版本号5、H5时&#xff0c;tabBar遮挡部分内容6、uniapp使用webview通信6.1、uniapp编写的小程序嵌入h5之间的通信6.1.1、小程序向h5发送消息6.1.2、h5向小程序…...

做网站的课题背景介绍/网络营销推广方案设计

中国物业行业起步于二十世纪八十年代&#xff0c;作为朝阳行业其信息化建设也处于研究与探索阶段&#xff0c;随着国内物业行业的蓬勃发展&#xff0c;由小型物业公司发展到中型物业企业、由中型物业企业发展成为超大规模的集团型物业企业越来越多&#xff0c;面对集团型物业企…...

html5单页模板/seo关键词优化推广外包

hive数据类型 基本数据类型&#xff1a; 数据类型长度例子TINYINT1byte有符号整数20SMALLINT2byte有符号整数20INT4byte有符号整数20BIGINT8byte有符号整数20BOOLEAN布尔类型TRUEFLOAT单精度浮点数3.1419DOUBLE双精度浮点数3.14159STRING字符序列。可以指定字符集。可以使用单…...

江苏企业网站建设公司/seo职业培训学校

一、值类型(基本类型)&#xff1a; 数值型&#xff1a; 十进制&#xff1a;0~9 八进制&#xff1a;0~7 十六进制&#xff1a;0X、0x 浮点型数据&#xff1a;传统记数&#xff08;1.2&#xff09;&#xff0c;科学记数&#xff08;6e3&#xff09; 特殊值Infinity:超出所表示的…...

长沙 直播网站建设/网络营销的成功案例有哪些

由于测试需要&#xff0c;所以想在虚拟机里运行程序&#xff0c;但是喜欢全指令操作&#xff0c;不喜欢每次虚拟机和宿主机切来切去。就想到用 SSH 连接虚拟机&#xff0c;这时候虚拟机的图形界面就是多余的。于是就想可不可以后台运行虚拟机。调查后发现 VirtualBox 提供了许多…...

杭州网站建设价格/2024免费网站推广大全

RelativeLayout相对布局 RelativeLayout是一种相对布局&#xff0c;控件的位置是按照相对位置来计算的&#xff0c;后一个控件在什么位置依赖于前一个控件的基本位置&#xff0c;是布局最常用&#xff0c;也是最灵活的一种布局。 我们下面通过XML布局和Java代码布局两种方式分别…...

厦门做企业网站找谁/百度网盘下载电脑版官方下载

Windows&#xff1a; netstat -ano | find "8081" Linux&#xff1a; netstat -ano | grep 8081 Mac sudo lsof -i :8081...