当前位置: 首页 > news >正文

Java实现敏感词过滤功能

敏感词过滤功能实现

1.GitHub上下载敏感词文件
在这里插入图片描述
2.将敏感词文件放在resources目录下
在这里插入图片描述
在业务中可以将文本中的敏感词写入数据库便于管理。
3.提供实现类demo
代码编写思路如下:1.将敏感词加载到list中,2.添加到StringSearch中,3.校验,判断文本是否属于敏感词汇。

import toolgood.words.StringSearch;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;public class TestWords {public static void main(String[] args) {String filePath = "src/main/resources/sensi_words.txt";try(BufferedReader reader = new BufferedReader(new FileReader(filePath))) {String line;List<String> list = new ArrayList<>();StringSearch search = new StringSearch();while ((line = reader.readLine()) != null){if (!list.contains(line)){list.add(line);}}search.SetKeywords(list);String[] words = new String[]{"草","草他妈","你是狗","你是做过鸡嘛","干你妈","煞笔","你是shabi","我有点呆"};for (int i = 0; i < words.length; i++) {boolean res = search.ContainsAny(words[i]);System.out.println(res ==  true ? words[i]+":敏感词": words[i]+":非敏感词");}System.out.println("---------------------------");for (int i = 0; i < words.length; i++) {//脱敏处理boolean res = search.ContainsAny(words[i]);System.out.println(res ==  true ? search.Replace(words[i],'*') : words[i]);}} catch (FileNotFoundException e) {throw new RuntimeException(e);} catch (IOException e) {throw new RuntimeException(e);}}
}

4.输出结果展示
在这里插入图片描述
注意:输出结果中,敏感词已经进行*号处理

相关文章:

Java实现敏感词过滤功能

敏感词过滤功能实现 1.GitHub上下载敏感词文件 2.将敏感词文件放在resources目录下 在业务中可以将文本中的敏感词写入数据库便于管理。 3.提供实现类demo 代码编写思路如下&#xff1a;1.将敏感词加载到list中&#xff0c;2.添加到StringSearch中&#xff0c;3.校验&#x…...

大数据向量检索的细节问题

背景:现有亿级别数据(条数),其文本大小约为150G,label为字符串,content为文本。用于向量检索,采用上次的试验进行,但有如下问题需要面对: 1、向量维度及所需空间 向量维度一版采用768的bert系列的模型推理得到,openai也有类似的功能,不过是2倍的维度(即1536),至…...

如何让智能搜索引擎更灵活、更高效?

随着互联网的发展和普及&#xff0c;搜索引擎已经成为人们获取信息、解决问题的主要工具之一。 然而&#xff0c;传统的搜索引擎在面对大数据时&#xff0c;往往存在着搜索效率低下、搜索结果精准度不够等问题。 为了解决这些问题&#xff0c;越来越多的企业开始采用智能搜索技…...

C++set集合与并查集map映射,哈希表应用实例B3632 集合运算 1P1918 保龄球

集合的性质 无序性互异性确定性 B3632 集合运算 1 题面 题目背景 集合是数学中的一个概念&#xff0c;用通俗的话来讲就是&#xff1a;一大堆数在一起就构成了集合。 集合有如下的特性&#xff1a; 无序性&#xff1a;任一个集合中&#xff0c;每个元素的地位都是相同的&…...

easyexcel合并单元格底色

一、效果图 二、导出接口代码 PostMapping("selectAllMagicExport")public void selectAllMagicExport(HttpServletRequest request, HttpServletResponse response) throws IOException {ServiceResult<SearchResult<TestMetLineFe2o3Export>> result …...

OpenCV图片校正

OpenCV图片校正 背景几种校正方法1.傅里叶变换 霍夫变换 直线 角度 旋转3.四点透视 角度 旋转4.检测矩形轮廓 角度 旋转参考 背景 遇到偏的图片想要校正成水平或者垂直的。 几种校正方法 对于倾斜的图片通过矫正可以得到水平的图片。一般有如下几种基于opencv的组合方…...

数字孪生流域共建共享相关政策解读

当前数字孪生技术在水利方面的应用刚起步&#xff0c;2021年水利部首次提出“数字孪生流域”概念&#xff0c;即以物理流域为单元、时空数据为底座、数学模型为核心、水利知识为驱动&#xff0c;对物理流域全要素和水利治理管理活动全过程的数字映射、智能模拟、前瞻预演&#…...

FSC147数据集格式解析

一. 引言 在研究很多深度学习框架的时候&#xff0c;往往需要使用到FSC147格式数据集&#xff0c;若要是想在自己的数据集上验证深度学习框架&#xff0c;就需要自己制作数据集以及相关标签&#xff0c;在论文Learning To Count Everything中&#xff0c;该数据集首次被提出。 …...

el-element中el-tabs案例的使用

el-element中el-tabs的使用 代码呈现 <template><div class"enterprise-audit"><div class"card"><div class"cardTitle"><p>交易查询</p></div><el-tabs v-model"activeName" tab-cl…...

tomcat结构目录有哪些?

bin 启动&#xff0c;关闭和其他脚本。这些 .sh文件&#xff08;对于Unix系统&#xff09;是这些.bat文件的功能副本&#xff08;对于 Windows系统&#xff09;。由于Win32命令行缺少某些功能&#xff0c;因此此处包含一些其他文件。 比如说&#xff1a;windows下启动tomcat用的…...

生成式AI系列 —— DCGAN生成手写数字

1、模型构建 1.1 构建生成器 # 导入软件包 import torch import torch.nn as nnclass Generator(nn.Module):def __init__(self, z_dim20, image_size256):super(Generator, self).__init__()self.layer1 nn.Sequential(nn.ConvTranspose2d(z_dim, image_size * 32,kernel_s…...

vscode-vue项目格式化+语法检验-草稿

Vue学习笔记7 - 在Vscode中配置Vetur&#xff0c;ESlint&#xff0c;Prettier_vetur规则_Myron.Maoyz的博客-CSDN博客...

【Java从0到1学习】10 Java常用类汇总

1. System类 System类对读者来说并不陌生&#xff0c;因为在之前所学知识中&#xff0c;需要打印结果时&#xff0c;使用的都是“System.out.println();”语句&#xff0c;这句代码中就使用了System类。System类定义了一些与系统相关的属性和方法&#xff0c;它所提供的属性和…...

第三届人工智能与智能制造国际研讨会(AIIM 2023)

第三届人工智能与智能制造国际研讨会&#xff08;AIIM 2023&#xff09; The 3rd International Symposium on Artificial Intelligence and Intelligent Manufacturing 第三届人工智能与智能制造国际研讨会&#xff08;AIIM 2023&#xff09;将于2023年10月27-29日在成都召开…...

层次分析法

目录 一&#xff1a;问题的引入 二&#xff1a;模型的建立 1.分析系统中各因素之间的关系&#xff0c;建立系统的递阶层次结构。 2.对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较&#xff0c;构造两两比较矩阵&#xff08;判断矩阵&#xff09;。 3.由判…...

Error Handling

有几个特定的异常类允许用户代码对与CAN总线相关的特定场景做出反应: Exception (Python standard library)+-- ...+-- CanError (python-can)+-- CanInterfaceNotImplementedError+-- CanInitializationError...

leetcode:字符串相乘(两种方法)

题目&#xff1a; 给定两个以字符串形式表示的非负整数 num1 和 num2&#xff0c;返回 num1 和 num2 的乘积&#xff0c;它们的乘积也表示为字符串形式。 注意&#xff1a;不能使用任何内置的 BigInteger 库或直接将输入转换为整数。 示例 1: 输入: num1 "2", nu…...

【爬虫练习之glidedsky】爬虫-基础2

题目 链接 爬虫往往不能在一个页面里面获取全部想要的数据&#xff0c;需要访问大量的网页才能够完成任务。 这里有一个网站&#xff0c;还是求所有数字的和&#xff0c;只是这次分了1000页。 思路 找到调用接口 可以看到后面有个参数page来控制页码 代码实现 import reques…...

03.有监督算法——决策树

1.决策树算法 决策树算法可以做分类&#xff0c;也可以做回归 决策树的训练与测试&#xff1a; 训练阶段&#xff1a;从给定的训练集构造出一棵树&#xff08;从根节点开始选择特征&#xff0c;如何进行特征切分&#xff09; 测试阶段&#xff1a;根据构造出来的树模型从上…...

网络协议详解之STP

目录 一、STP协议&#xff08;生成树&#xff09; 1.1 生成树协议核心知识点&#xff1a; 1.2 生成树协议与导致问题&#xff1a; 生成树含义&#xff1a; 1.3 802.1D 规则&#xff1a; 802.1D 缺点&#xff1a; 1.4 PVST cisco私有 1.5 PVST 1.6 快速生成树 快速的原…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...