【考研数学】线形代数第三章——向量 | 基本概念、向量组的相关性与线性表示
文章目录
- 引言
- 一、向量的概念与运算
- 1.1 基本概念
- 1.2 向量运算的性质
- 二、向量组的相关性与线性表示
- 2.1 理论背景
- 2.2 相关性与线性表示基本概念
- 2.3 向量组相关性与线性表示的性质
引言
向量是线性代数的重点和难点。向量是矩阵,同时矩阵又是由向量构成的,向量组与矩阵的关系非常紧密。
一、向量的概念与运算
1.1 基本概念
向量——既有大小(长度)又有方向的量称为向量, ( a 1 , a 2 , … , a n ) T , ( a 1 , a 2 , … , a n ) (a_1,a_2,\dots,a_n)^T,(a_1,a_2,\dots,a_n) (a1,a2,…,an)T,(a1,a2,…,an) 分别称为 n n n 维列向量和 n n n 维行向量,其中 a i a_i ai 称为向量的 n n n 个分量,一般情况下我们所指的向量为列向量。
向量的模——设向量 α = ( a 1 , a 2 , … , a n ) T \alpha=(a_1,a_2,\dots,a_n)^T α=(a1,a2,…,an)T ,称 a 1 2 + a 2 2 + ⋯ + a n 2 \sqrt{a_1^2+a_2^2+\dots+a_n^2} a12+a22+⋯+an2 为向量 α \alpha α 的模或长度,记为 ∣ α ∣ . |\alpha|. ∣α∣.
向量的单位化——设向量 α = ( a 1 , a 2 , … , a n ) T \alpha=(a_1,a_2,\dots,a_n)^T α=(a1,a2,…,an)T 为非零向量,与向量 α \alpha α 方向相同且长度为 1 的向量称为 α \alpha α 对应的单位向量,令 α 0 = 1 ∣ α ∣ α , \alpha^0=\frac{1}{|\alpha|}\alpha, α0=∣α∣1α, 则称 α 0 \alpha^0 α0 为向量 α \alpha α 的单位化向量。
向量的三则运算——加、减、与一个常数相乘。
向量的内积——设向量 α = ( a 1 , a 2 , … , a n ) T \alpha=(a_1,a_2,\dots,a_n)^T α=(a1,a2,…,an)T ,设向量 β = ( b 1 , b 2 , … , b n ) T \beta=(b_1,b_2,\dots,b_n)^T β=(b1,b2,…,bn)T ,称 a 1 b 1 + a 2 b 2 + ⋯ + a n b n a_1b_1+a_2b_2+\dots+a_nb_n a1b1+a2b2+⋯+anbn 为向量 α , β \alpha ,\beta α,β 的内积,记为 ( α , β ) . (\alpha,\beta). (α,β).
1.2 向量运算的性质
(一)三则运算的性质
(二)向量内积运算的性质
- ( α , β ) = ( β , α ) = α T β = β T α . (\alpha,\beta)=(\beta,\alpha)=\alpha^T\beta=\beta^T\alpha. (α,β)=(β,α)=αTβ=βTα.
- ( α , α ) = α T α = ∣ α ∣ 2 , (\alpha,\alpha)=\alpha^T\alpha=|\alpha|^2, (α,α)=αTα=∣α∣2, 且 ( α , α ) = 0 (\alpha,\alpha)=0 (α,α)=0 的充要条件为 α = 0. \alpha=0. α=0.
- ( a , k 1 β 1 + k 2 β 2 + ⋯ + k n β n ) = k 1 ( α , β 1 ) + k 2 ( α 2 , β 2 ) + ⋯ + k n ( α , β n ) . (a,k_1\beta_1+k_2\beta_2+\dots+k_n\beta_n)=k_1(\alpha,\beta_1)+k_2(\alpha_2,\beta_2)+\dots+k_n(\alpha,\beta_n). (a,k1β1+k2β2+⋯+knβn)=k1(α,β1)+k2(α2,β2)+⋯+kn(α,βn).
- 若 ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0 ,即 a 1 b 1 + a 2 b 2 + ⋯ + a n b n = 0 a_1b_1+a_2b_2+\dots+a_nb_n=0 a1b1+a2b2+⋯+anbn=0 ,称 α , β \alpha,\beta α,β 正交,记为 α ⊥ β \alpha \bot \beta α⊥β ,特别地,零向量与任何向量正交。
二、向量组的相关性与线性表示
2.1 理论背景
对于齐次线性方程组:
以及非齐次线性方程组:
令 α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,…,am1)T,α2=(a12,a22,…,am2)T,…,αn=(a1n,a2n,…,amn)T,b=(b1,b2,…,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( I ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (I) x1α1+x2α2+⋯+xnαn=0(I) x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( I I ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (II) x1α1+x2α2+⋯+xnαn=b(II)
1,设 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 为向量组,称 k 1 α 1 + k 2 α 2 + ⋯ + k n α n k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n k1α1+k2α2+⋯+knαn 为向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 的线性组合。
2,设 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 为向量组, b b b 为一个向量,若存在一组数 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,…,kn ,使得 b = k 1 α 1 + k 2 α 2 + ⋯ + k n α n b=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n b=k1α1+k2α2+⋯+knαn ,称向量 b b b 可由向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性表示。
2.2 相关性与线性表示基本概念
(一)相关性
对齐次线性方程组 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( ∗ ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0(*) x1α1+x2α2+⋯+xnαn=0(∗) (1)若方程组(*)只有零解,则向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性无关。
(2)若方程组(*)有非零解,即存在一组不全为零的数 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,…,kn 使得 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 , k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n=0, k1α1+k2α2+⋯+knαn=0, 称向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性相关。
(二)线性表示
对非齐次线性方程组 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( ∗ ∗ ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (**) x1α1+x2α2+⋯+xnαn=b(∗∗) (1)若方程组(**)有解,即存在常数 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,…,kn ,使得 b = k 1 α 1 + k 2 α 2 + ⋯ + k n α n b=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n b=k1α1+k2α2+⋯+knαn ,称向量 b b b 可由向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性表示。
(2)若方程组(**)无解,称向量 b b b 不可由向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性表示。
2.3 向量组相关性与线性表示的性质
这一块内容多,放在下一篇文章。
相关文章:
【考研数学】线形代数第三章——向量 | 基本概念、向量组的相关性与线性表示
文章目录 引言一、向量的概念与运算1.1 基本概念1.2 向量运算的性质 二、向量组的相关性与线性表示2.1 理论背景2.2 相关性与线性表示基本概念2.3 向量组相关性与线性表示的性质 引言 向量是线性代数的重点和难点。向量是矩阵,同时矩阵又是由向量构成的,…...
温故知新之:接口和抽象类有什么区别?
本文以下内容基于 JDK 8 版本。 1、接口介绍 接口是 Java 语言中的一个抽象类型,用于定义对象的公共行为。它的创建关键字是 interface,在接口的实现中可以定义方法和常量,其普通方法是不能有具体的代码实现的,而在 JDK 8 之后&…...
回归预测 | MATLAB实现SSA-RF麻雀搜索优化算法优化随机森林算法多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SSA-RF麻雀搜索优化算法优化随机森林算法多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SSA-RF麻雀搜索优化算法优化随机森林算法多输入单输出回归预测(多指标,多图)…...
文旅景区vr体验馆游乐场vr项目是什么
我们知道现在很多的景区或者游玩的地方,以及学校、科技馆、科普馆、商场或公园或街镇,都会建一些关于游玩以及科普学习的项目。从而增加学习氛围或者带动人流量等等。这样的形式,还是有很好的效果呈现。 普乐蛙VR体验馆案例 下面是普乐蛙做的…...
Vue Element upload组件和Iview upload 组件上传文件
今天要分享的是使用这俩个UI组件库的upload组件分别实现调用组件本身的上传方法实现和后台交互。接下来就是开车的时间,请坐稳扶好~ 一、element upload组件传送门 1、html文件 <el-upload ref"uploadRef" :action"uploadUrl" :data"…...
无涯教程-PHP - File 函数
文件系统功能用于访问和操纵文件系统,PHP为您提供了操纵文件的所有功能。 运行时配置 这些功能的行为受php.ini中的设置影响。 NameDefaultChangeableChangelogallow_url_fopen"1"PHP_INI_ALLPHP_INI_ALL in PHP < 4.3.4. PHP_INI_SYSTEM in PHP &l…...
elasticsearch 常用查询 7.4 版本
Elasticsearch 常用查询 match:全文查询exists:查询存在的字段must_not:查询不存在的字段ids:跟据id查询prefix:前缀查询range: 查询范围term:精准查询terms:多术语查询 本文基于es 7.4版本文档…...
ChatGpt 从入门到精通
相关资源下载地址: 基于ChatGPT的国际中文语法教学辅助应用的探讨.pdf 生成式人工智能技术对教育领域的影响-关于ChatGPT的专访.pdf 电子-从ChatGPT热议看大模型潜力.pdf 从图灵测试到ChatGPT——人机对话的里程碑及启示.pdf 正文 ChatGPT 是一种强大的自然语言处理模型&…...
vscode远程调试
安装ssh 在vscode扩展插件搜索remote-ssh安装 如果连接失败,出现 Resolver error: Error: XHR failedscode 报错,可以看这篇帖子vscode ssh: Resolver error: Error: XHR failedscode错误_阿伟跑呀的博客-CSDN博客 添加好后点击左上角的加号࿰…...
Vue3 数据响应式原理
核心: 通过Proxy(代理): 拦截对data任意属性的任意(13种)操作, 包括属性值的读写, 属性的添加, 属性的删除等… 通过 Reflect(反射): 动态对被代理对象的相应属性进行特定的操作 const userData {name: "John",age: 12 };let proxyUser new Proxy(use…...
2023.08.20 学习周报
文章目录 摘要文献阅读1.题目2.现有问题3.解决方案4.本文贡献5.方法5.1 利用长短期记忆网络学习时空演化特征5.2 构建用于气象辅助信息编码的堆叠自编码器5.3 使用多任务学习发现全市通用模式5.4 模型 6. 实验6.1 数据集6.2 实验设置6.3 实验结果 7.结论8.展望 大气污染物传输总…...
软件测试技术之单元测试—工程师 Style 的测试方法(2)
怎么写单元测试? JUnit 简介 基本上每种语言和框架都有不错的单元测试框架和工具,例如 Java 的 JUnit、Scala 的 ScalaTest、Python的 unittest、JavaScript 的 Jest 等。上面的例子都是基于 JUnit 的,我们下面就简单介绍下 JUnit。 JUnit…...
项目中超图 for openlayer和超图for cesium同时引入的问题
一个项目中同时用到了超图的openlayer和cesium版本,首先我是外部引入的超图的开发包,你要是通过npm导入的那就没关系了。 <script type"text/javascript" src"/static/openlayer/supermap/ol/iclient-ol.min.js"></script&…...
3D与沉浸式技术,如何助力企业数字化转型?
说起3D,估计许多读者朋友会在第一时间想起《阿凡达》系列和《侏罗纪公园》系列电影大作。每一帧细节纤毫毕现的逼真画面,让观众几乎分不清虚拟与现实,完全沉浸在导演打造的视觉盛宴中。 事实上,除了大家所熟知的3D影视动画之外&am…...
excel vba 将多张数据表的内容合并到一张数据表
功能描述: 一个Excel文件有很多个 样式相同 的数据表, 需要将多张数据表的内容合并到一张数据表里。 vba实现代码如下: Attribute VB_Name "NewMacros" Option Explicit Public Const Const_OutSheetName As String "V…...
接口和抽象类的区别?解析接口和抽象类的特点和用法
接口和抽象类的区别?解析接口和抽象类的特点和用法 引言 在面向对象编程中,接口和抽象类是两个非常重要的概念。它们都可以用于定义一组相关的方法,但在实际使用中有一些差异。本文将探讨接口和抽象类的区别,并通过示例代码和测…...
vscode-vue项目格式化
一、插件要求 Prettier Vetur 二、配置文件 {"workbench.startupEditor": "newUntitledFile","files.autoSave": "off", // 关闭文件自动保存,避免开发时候页面变化"editor.tabSize": 2, // tab距离"ve…...
SAP MM学习笔记26- SAP中 振替转记(转移过账)和 在库转送(库存转储)1- 移动Type间振替转记
SAP 中在库移动 不仅有入库(GR),出库(GI),也可以是单纯内部的转记或转送。 1,振替转记(转移过账) 2,在库转送(库存转储) 1ÿ…...
SAP SPL(Special Ledger)之注释行项目-Noted Items
财务凭证过账里常见的SPL特殊总账标识根据业务主要有三种,BoE-billing of exchange: 汇票业务,包括商业汇票和银行汇票;Down Payment,预付款业务,包括供应商和客户预付款和申请;其它,一般是保证…...
学习平台助力职场发展与提升
近年来,随着互联网技术的发展,学习平台逐渐成为了职场发展和提升的必备工具。学习平台通过提供丰富的课程内容、灵活的学习时间和个性化的学习路径,帮助职场人士更好地提升自己的技能和知识储备,为职场发展打下坚实的基础。 学习…...
有没有免费格式转换工具推荐?PDF转化为PPT的方法
在当今职场生活中,掌握文件格式转换技能变得异常重要。将PDF文档转换为PPT格式可以在演讲、报告等场合更好地展示和传达信息,为我们的专业形象增添亮点,接下来我们可以一起来看一下“有没有免费格式转换工具推荐?PDF转化为PPT的方法”相关的…...
【LeetCode-经典面试150题-day12】
20.有效的括号 题意: 给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括…...
TCP机制-延迟应答,捎带应答
在看本篇博客前推荐先看TCP中窗口和滑动窗口的含义以及流量控制 延迟应答和捎带应答都是TCP用于提高网络传输效率的机制 延迟应答 当发送端发送数据给接收端了以后,按道理接收端的内核会立即返回ACK(应答报文)给发送端,而且ACK&a…...
【Redis从头学-8】Redis中的ZSet数据类型实战场景之用户积分榜
🧑💻作者名称:DaenCode 🎤作者简介:啥技术都喜欢捣鼓捣鼓,喜欢分享技术、经验、生活。 😎人生感悟:尝尽人生百味,方知世间冷暖。 📖所属专栏:Re…...
Springboot内嵌SQLite配置使用
版本号 MacOS Apple M1 | Jdk17 | Maven 3.8.5 | SpringBoot 2.6.9 | SQLite 3.42.0.0 pom.xml <dependencies><dependency><groupId>org.xerial</groupId><artifactId>sqlite-jdbc</artifactId><version>3.42.0.0</version&g…...
【微服务学习笔记】认识微服务
【微服务学习笔记】认识微服务 单体架构 分布式架构 微服务架构 SpringCloud 服务拆分和注意事项 服务拆分的案例demo 各个服务之间的数据库都是相互独立的,你不能直接访问对方的数据库,只能从一个服务像另外一个服务发起远程调用 在订单模块的服务中 …...
基于Android R快速编译recovery-ramdisk.img
Android默认没有单编recovery-ramdisk.img的命令,我们可以自己修改Makefile实现 修改:build/core/Makefile 添加: .PHONY: recovery-ramdisk-nodeps recovery-ramdisk-nodeps: $(MKBOOTFS) | $(COMPRESSION_COMMAND_DEPS)echo "make …...
Redis分布式缓存
分布式缓存 -- 基于Redis集群解决单机Redis存在的问题 单机的Redis存在四大问题: 1.Redis持久化 Redis有两种持久化方案: RDB持久化 AOF持久化 1.1.RDB持久化 RDB全称Redis Database Backup file(Redis数据备份文件)&#x…...
最大公约数和最小公倍数
最大公约数: 概念: 公约数中最大的称为最大公约数。 对任意的若干个正整数,1总是它们的公因数。 公约数与公倍数相反,就是既是A的约数同时也是B的约数的数,12和15的公约数有1,3,最大公约数就是…...
数据结构——二叉搜索树(附带C++实现版本)
文章目录 二叉搜索树概念 二叉树的实际应用二叉树模拟实现存储结构二叉搜索树构成二叉搜索树的查找插入操作中序遍历二叉树的删除循环(利用左子树最右节点)递归(利用右子树根节点) 二叉树拷贝二叉树资源的销毁 二叉树实现完整代码总结 二叉搜索树 概念 二叉搜索树…...
公司网站可以做服务器吗/网站关键词优化教程
内存分配方式有三种: [1] 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量, static 变量。 [2] 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建…...
互助县公司网站建设/网站如何优化一个关键词
MySQL锁详解 一、概述 数据库锁定机制简单来说,就是数据库为了保证数据的一致性,而使各种共享资源在被并发访问变得有序所设计的一种规则。对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外。MySQL数据库由于其自身架构…...
网站开发合同 中英文/网站收录查询平台
新建数据库连接类MysqlDatabase.class.php1,数据库连接需要用到的属性<?php /*** Created by PhpStorm.* User: Administrator* Date: 2018/3/3 0003* Time: 下午 2:57*/class MysqlDatabase{//数据库连接信息private $dbConfigarray(host>localhost,port>3306,user&…...
济南seo网络优化公司/宁波seo公司排名榜
XCalvin 于 2015-02-26 09:37:18发表:我想这说明不了神马问题啊,搜索的数据只能说明有人不大清楚想了解而已。首先红旗就不用多说的----本身带有政治色彩的应该说是属于“国企”类的单位,倒闭然后被兼并……这种事情搜索多了只能说明国人爱看热闹的天性……...
中国菲律宾最新消息/整站seo优化公司
问题 今天导入项目时Eclipse报错如下: Access restriction: The type JPEGCodec is not API (restriction on required library C:\Program Files\Java\jdk1.8.0_191\jre\lib\rt.jar) 第一次遇到这种错误,百度了下,原来是因为Eclipse默认把访…...
域名怎么制作网站/网站关键词优化案例
Cmake使用总结 Cmake中常见问题:## 标题 ## 1. 下载问题。经常需要从国外下载第三方包,由于网络问题可能会下载失败!建议开启VPN进行下载,或者从其他下载源下载后进行手动解压并放到指定路径下。 2. 路径问题。Cmake中往往需要填写路径&am…...