当前位置: 首页 > news >正文

STM32 F103C8T6学习笔记12:红外遥控—红外解码-位带操作

今日学习一下红外遥控的解码使用,红外遥控在日常生活必不可少,它的解码与使用也是学习单片机的一个小过程,我们将通过实践来实现它。

文章提供源码、测试工程下载、测试效果图。

目录

红外遥控原理:

 红外遥控特点:

红外发射装置:

 红外接收示意图:

 NEC协议:

程序设计:

程序实践目标:

位带操作:

定时器4初始化:

定时器4中断服务程序:

处理红外键盘:

主函数:

测试效果:

工程下载:


红外遥控原理:

下图就是红外遥控与1858红外接收头

 红外遥控特点:

优点:抗干扰能力强、信息可靠、功耗低、成本低、容易实现通信

缺点:距离只有几米

红外发射装置:

红外发射装置就比如遥控器,它是由键盘电路、红外编码电路、电源电路、红外发射电路组成的,红外发射电路在遥控器里是最特殊的,但它本质也是一个特殊的红外发光二极管,它在被激发时发出的是红外线,而不是普通二极管那样的可见光~

发射管红外波长:940Nm         载波频率:38KHZ

 红外接收示意图:

由图可知,发射端在左侧控制二极管发射红外线,右侧接收端转化为0和1的信号

 

 NEC协议:

配套的红外遥控器使用的是EC协议,EC码的位定义:
一个脉冲对应560us的连续载波,

一个逻辑1传输需要2.25ms(560us脉冲+1680us低电平),

一个逻辑0的传输需要 1.125ms(560us脉冲+560us低电平)。

 反码就是源码基础上取反的意思

程序设计上应该先判断是否有引导码,有了引导码,之后就开始接收对应地址码,控制码以及他们的反码等。

程序设计:

红外接收方面,主要是获取高低电平的信号,而有关NEC逻辑,0协议的转换,接收头已经做好了,会从信号端直接传来1,0的电平信号,因此我们只需捕捉这样的电平信号,将其转换为具体的值即可~

这里提供俩种思路:1.外部中断法      2.定时器捕获法    都可以使用

程序实践目标:

使用定时器4 通道4 捕获红外接收模块接受的遥控信号,并通过串口1打印给上位机

位带操作:

这里我随便找了一个STM32能用的位带地址操作的宏定义,将其放在.h文件即可:

因为STM32 F103 C8T6的引脚只有PA 与 PB 端口,因此我将多出来的注释掉了~~

//IO口地址映射
//输出寄存器
#define GPIOA_ODR_Addr (GPIOA_BASE+12)//0x4001280C
#define GPIOB_ODR_Addr (GPIOB_BASE+12)//0x40010C0C
//#define GPIOC_ODR_Addr (GPIOC_BASE+12)//0x4001100C
//#define GPIOD_ODR_Addr (GPIOD_BASE+12)//0x4001140C
//#define GPTOE_ODR_Addr (GPIOE_BASE+12)//0x4001180C
//#define GPIOF_ODR_Addr (GPIOF_BASE+12)//0x40011A0C
//#define GPIOG_ODR_Addr (GPIOG_BASE+12)//0x40011E0C
//输入寄存器
#define GPIOA_IDR_Addr (GPIOA_BASE+8)//0x40010808
#define GPIOB_IDR_Addr (GPIOB_BASE+8)//0x40010C08
//#define GPIOC_IDR_Addr (GPIOC_BASE+8)//0x40011008
//#define GPIOD_IDR_Addr (GPIOD_BASE+8)//0x40011408
//#define GPIOE_IDR_Addr (GPIOE_BASE+8)//0x40011808
//#define GPTOF_IDR_Addr (GPIOF_BASE+8)//0x40011A08
//#define GPTOG_IDR_Addr (GPIOG_BASE+8)//0x40011E08//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)	BIT_ADDR(GPIOA_ODR_Addr,n)//输出
#define PAin(n) 	BIT_ADDR (GPIOA_IDR_Addr,n)//输入#define PBout(n) 	BIT_ADDR(GPIOB_ODR_Addr,n)//输出
#define PBin(n) 	BIT_ADDR(GPIOB_IDR_Addr,n)//输入//#define PCout(n) 	BIT_ADDR(GPIOC_ODR_Addr,n)//输出
//#define PCin(n) 	BIT_ADDR(GPIOC_IDR_Addr,n)//输入
// 
//#define PDout(n) 	BIT_ADDR(GPIOD_ODR_Addr,n)//输出
//#define PDin(n) 	BIT_ADDR(GPIOD_IDR_Addr,n)//输入
// 
//#define PEout(n) 	BIT_ADDR(GPIOE_ODR_Addr,n)//输出
//#define PEin(n) 	BIT_ADDR(GPIOE_IDR_Addr,n)//输入
// 
//#define PFout(n)	BIT_ADDR(GPIOF_ODR_Addr,n)//输出
//#define PFin(n)		BIT_ADDR(GPIOF_IDR_Addr,n)//输入
// 
//#define PGout(n)	BIT_ADDR(GPIOG_oDR_Addr,n)//输出
//#define PGin(n) 	BIT_ADDR(GPIOG_IDR_Addr,n)//输入

定时器4初始化:

//红外遥控初始化
//设置IO以及定时器4的输入捕获
void Remote_Init(void)
{GPIO_InitTypeDef GPIO_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_ICInitTypeDef  TIM_ICInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); //使能PORTB时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);	//TIM4 时钟使能GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;				 //PB9 输入GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; 		//上拉输入GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);GPIO_SetBits(GPIOB,GPIO_Pin_9);	//初始化GPIOB.9TIM_TimeBaseStructure.TIM_Period = 10000; //设定计数器自动重装值 最大10ms溢出TIM_TimeBaseStructure.TIM_Prescaler =(72-1); 	//预分频器,1M的计数频率,1us加1.TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMxTIM_ICInitStructure.TIM_Channel = TIM_Channel_4;  // 选择输入端 IC4映射到TI4上TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;	//上升沿捕获TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;	 //配置输入分频,不分频TIM_ICInitStructure.TIM_ICFilter = 0x03;//IC4F=0011 配置输入滤波器 8个定时器时钟周期滤波TIM_ICInit(TIM4, &TIM_ICInitStructure);//初始化定时器输入捕获通道TIM_Cmd(TIM4,ENABLE ); 	//使能定时器4NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;  //TIM3中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;  //先占优先级0级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;  //从优先级3级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure);  //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器TIM_ITConfig( TIM4,TIM_IT_Update|TIM_IT_CC4,ENABLE);//允许更新中断 ,允许CC4IE捕获中断
}//遥控器接收状态
//[7]:收到了引导码标志
//[6]:得到了一个按键的所有信息
//[5]:保留
//[4]:标记上升沿是否已经被捕获
//[3:0]:溢出计时器
u8 	RmtSta=0;
u16 Dval;		//下降沿时计数器的值
u32 RmtRec=0;	//红外接收到的数据
u8  RmtCnt=0;	//按键按下的次数
//定时器4中断服务程序
void TIM4_IRQHandler(void)
{if(TIM_GetITStatus(TIM4,TIM_IT_Update)!=RESET)//计时器更新中断{if(RmtSta&0x80)								//上次有数据被接收到了{RmtSta&=~0X10;							//取消上升沿已经被捕获标记if((RmtSta&0X0F)==0X00)RmtSta|=1<<6;	//标记已经完成一次按键的键值信息采集if((RmtSta&0X0F)<14)RmtSta++;else{RmtSta&=~(1<<7);					//清空引导标识RmtSta&=0XF0;						//清空计数器}}}if(TIM_GetITStatus(TIM4,TIM_IT_CC4)!=RESET)//捕获中断{if(RDATA)//上升沿捕获{TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Falling);						//CC4P=1	设置为下降沿捕获TIM_SetCounter(TIM4,0);							//清空定时器值RmtSta|=0X10;							//标记上升沿已经被捕获} else //下降沿捕获{Dval=TIM_GetCapture4(TIM4);					//读取CCR4也可以清CC4IF标志位TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Rising);				//CC4P=0	设置为上升沿捕获if(RmtSta&0X10)							//完成一次高电平捕获{if(RmtSta&0X80)//接收到了引导码{if(Dval>300&&Dval<800)			//560为标准值,560us{RmtRec<<=1;					//左移一位.RmtRec|=0;					//接收到0} else if(Dval>1400&&Dval<1800)	//1680为标准值,1680us{RmtRec<<=1;					//左移一位.RmtRec|=1;					//接收到1} else if(Dval>2200&&Dval<2600)	//得到按键键值增加的信息 2500为标准值2.5ms{RmtCnt++; 					//按键次数增加1次RmtSta&=0XF0;				//清空计时器}}else if(Dval>4200&&Dval<4700)		//4500为标准值4.5ms{RmtSta|=1<<7;					//标记成功接收到了引导码RmtCnt=0;						//清除按键次数计数器}}RmtSta&=~(1<<4);//取消上升沿已经被捕获标记}}TIM_ClearITPendingBit(TIM4,TIM_IT_Update|TIM_IT_CC4);
}

定时器4中断服务程序:


//遥控器接收状态
//[7]:收到了引导码标志
//[6]:得到了一个按键的所有信息
//[5]:保留
//[4]:标记上升沿是否已经被捕获
//[3:0]:溢出计时器
u8 	RmtSta=0;
u16 Dval;		//下降沿时计数器的值
u32 RmtRec=0;	//红外接收到的数据
u8  RmtCnt=0;	//按键按下的次数
//定时器4中断服务程序
void TIM4_IRQHandler(void)
{if(TIM_GetITStatus(TIM4,TIM_IT_Update)!=RESET)//计时器更新中断{if(RmtSta&0x80)								//上次有数据被接收到了{RmtSta&=~0X10;							//取消上升沿已经被捕获标记if((RmtSta&0X0F)==0X00)RmtSta|=1<<6;	//标记已经完成一次按键的键值信息采集if((RmtSta&0X0F)<14)RmtSta++;else{RmtSta&=~(1<<7);					//清空引导标识RmtSta&=0XF0;						//清空计数器}}}if(TIM_GetITStatus(TIM4,TIM_IT_CC4)!=RESET)//捕获中断{if(RDATA)//上升沿捕获{TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Falling);						//CC4P=1	设置为下降沿捕获TIM_SetCounter(TIM4,0);							//清空定时器值RmtSta|=0X10;							//标记上升沿已经被捕获} else //下降沿捕获{Dval=TIM_GetCapture4(TIM4);					//读取CCR4也可以清CC4IF标志位TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Rising);				//CC4P=0	设置为上升沿捕获if(RmtSta&0X10)							//完成一次高电平捕获{if(RmtSta&0X80)//接收到了引导码{if(Dval>300&&Dval<800)			//560为标准值,560us{RmtRec<<=1;					//左移一位.RmtRec|=0;					//接收到0} else if(Dval>1400&&Dval<1800)	//1680为标准值,1680us{RmtRec<<=1;					//左移一位.RmtRec|=1;					//接收到1} else if(Dval>2200&&Dval<2600)	//得到按键键值增加的信息 2500为标准值2.5ms{RmtCnt++; 					//按键次数增加1次RmtSta&=0XF0;				//清空计时器}}else if(Dval>4200&&Dval<4700)		//4500为标准值4.5ms{RmtSta|=1<<7;					//标记成功接收到了引导码RmtCnt=0;						//清除按键次数计数器}}RmtSta&=~(1<<4);//取消上升沿已经被捕获标记}}TIM_ClearITPendingBit(TIM4,TIM_IT_Update|TIM_IT_CC4);
}

处理红外键盘:

//处理红外键盘
//返回值:
//	 0,没有任何按键按下
//其他,按下的按键键值.
u8 Remote_Scan(void)
{u8 sta=0;u8 t1,t2;if(RmtSta&(1<<6))//得到一个按键的所有信息了{t1=RmtRec>>24;			//得到地址码t2=(RmtRec>>16)&0xff;	//得到地址反码if((t1==(u8)~t2)&&t1==REMOTE_ID)//检验遥控识别码(ID)及地址{t1=RmtRec>>8;t2=RmtRec;if(t1==(u8)~t2)sta=t1;//键值正确}if((sta==0)||((RmtSta&0X80)==0))//按键数据错误/遥控已经没有按下了{RmtSta&=~(1<<6);//清除接收到有效按键标识RmtCnt=0;		//清除按键次数计数器}}return sta;
}

主函数:

 这里主函数为了防止打印反馈太频繁,改为定时器2  每100ms赋值一次Remote_temp变量 红外的接收值

#include "main.h"char Remote_temp,Remote_cnt;int main(void)
{	init_ALL();     //初始化所有函数:printf("HELLO \r\n");while(1){	if(Remote_temp!=0){printf("Remote_temp(DEX)=%d\r\n",Remote_temp); //十进制打印一次键值printf("Remote_temp(HEX)=%x\r\n",Remote_temp); //HEX 16 进制打印一次键值			}	}	
}//初始化所有函数:
void init_ALL(void)
{Usart1_Init(115200);SysTick_Init(72);         //初始化滴答计时器Timer2_Init();						//初始化定时器2Remote_Init();            //红外按键初始化
}//定时器2中断服务函数
void TIM2_IRQHandler(void)
{if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET){		if(++Remote_cnt==10)     //100ms赋值一次红外键值{Remote_cnt=0;		Remote_temp=Remote_Scan();}TIM_ClearITPendingBit(TIM2, TIM_IT_Update);//清出中断寄存器标志位,用于退出中断}
}

测试效果:

 

工程下载:

https://download.csdn.net/download/qq_64257614/88241288?spm=1001.2014.3001.5503

相关文章:

STM32 F103C8T6学习笔记12:红外遥控—红外解码-位带操作

今日学习一下红外遥控的解码使用&#xff0c;红外遥控在日常生活必不可少&#xff0c;它的解码与使用也是学习单片机的一个小过程&#xff0c;我们将通过实践来实现它。 文章提供源码、测试工程下载、测试效果图。 目录 红外遥控原理&#xff1a; 红外遥控特点&#xff1a; …...

linux 环境收集core文件步骤

Linux环境下进程发生异常而挂掉&#xff0c;通常很难查找原因&#xff0c;但是一般Linux内核给我们提供的核心文件&#xff0c;记录了进程在崩溃时候的信息&#xff0c;在C语言类的大型项目中&#xff0c;有助于深入定位。其配置流程如下&#xff1a; 1 查看生成core文件开关是…...

Git企业开发控制理论和实操-从入门到深入(一)|为什么需要Git|Git的安装

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 首先是博主的高质量博客的汇总&#xff0c;这个专栏里面的博客&#xff0c;都是博主最最用心写的一部分&#xff0c;干货满满&#xff0c;希望对大家有帮助。 高质量博客汇总https://blog.csdn.net/yu_cblog/cate…...

上篇——税收大数据应用研究

财税是国家治理的基础和重要支柱&#xff0c;税收是国家治理体系的重要组成部分。我们如何利用税收数据深入挖掘包含的数据价值&#xff0c;在进行数据分析&#xff0c;提升税收治理效能&#xff0c;推进税收现代化。 1. 定义与特点 对于“大数据”&#xff08;Big data&#…...

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)

疲劳驾驶检测和识别4&#xff1a;C实现疲劳驾驶检测和识别(含源码&#xff0c;可实时检测) 目录 疲劳驾驶检测和识别4&#xff1a;C实现疲劳驾驶检测和识别(含源码&#xff0c;可实时检测) 1.疲劳驾驶检测和识别方法 2.人脸检测方法 3.疲劳驾驶识别模型(Python) &#xf…...

Android WakefulBroadcastReceiver的使用

WakefulBroadcastReceiver 是一种特殊类型的广播接收器&#xff0c;为应用创建和管理 PARTIAL_WAKE_LOCK 。 简单来说&#xff0c; WakefulBroadcastReceiver 是持有系统唤醒锁的 BroadcastReceiver &#xff0c;用于执行需要保持CPU运转的场景。 注册 注册 Receiver &#…...

python知识:什么是字符编码?

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 我们的MySQL使用latin1的默认字符集&#xff0c; 也就是说&#xff0c;对汉字字段直接使用GBK内码的编码进行存储&#xff0c; 当需要对一些有汉字的字段进行拼音排序时&#xff08;特别涉及到类似于名字这样的字段时…...

Vue2中使用Pinia

Vue2中使用Pinia 1.初始化配置 # main.jsimport Vue from vue import App from ./App.vue import pinia from ./stores/index import { PiniaVuePlugin } from piniaVue.use(PiniaVuePlugin)new Vue({render: h > h(App),pinia, }).$mount(#app)2.模块化开发 新建stores文…...

Docker关于下载,镜像配置,容器启动,停止,查看等基础操作

系列文章目录 文章目录 系列文章目录前言一、安装Docker并配置镜像加速器二、下载系统镜像&#xff08;Ubuntu、 centos&#xff09;三、基于下载的镜像创建两个容器 &#xff08;容器名一个为自己名字全拼&#xff0c;一个为首名字字母&#xff09;四、容器的启动、 停止及重启…...

穿越网络迷雾的神奇通道 - WebSocket详解

WebSocket&#xff0c;作为一项前端技术&#xff0c;已经成为现代Web应用不可或缺的一部分。本文将深入解析WebSocket&#xff0c;介绍其工作原理和用途&#xff0c;并通过简单的代码示例&#xff0c;让你对这个神奇的网络通信协议有更深入的了解。 WebSocket是什么&#xff1…...

无脑入门pytorch系列(五)—— nn.Dropout

本系列教程适用于没有任何pytorch的同学&#xff08;简单的python语法还是要的&#xff09;&#xff0c;从代码的表层出发挖掘代码的深层含义&#xff0c;理解具体的意思和内涵。pytorch的很多函数看着非常简单&#xff0c;但是其中包含了很多内容&#xff0c;不了解其中的意思…...

Python土力学与基础工程计算.PDF-压水试验

Python 求解代码如下&#xff1a; 1. import math 2. 3. # 输入参数 4. L 2.0 # 试验段长度&#xff0c;m 5. Q 120.0 # 第三阶段计算流量&#xff0c;L/min 6. p 1.5 # 第三阶段试验段压力&#xff0c;MPa 7. r0 0.05 # 钻孔半径&#xff0c;m 8. 9. # 计算透…...

Linux入门

一、安装相关软件 1.下载vmware (很容易下载,搜一下官网 ) 在cmd敲入 ncpa.cpl &#xff0c;查看是否有vmware 2.下载centos 下面是镜像源网站&#xff0c;当然你可以选择其他的镜像源&#xff0c;像清华镜像源和阿里镜像源。 Index of /centos/7.9.2009/isos/x86_64/ | …...

适合国内用户的五款ChatGPT插件

众所周知使用ChatGPT3.5需要使用魔法且不稳定&#xff0c;订阅ChatGPT4.0每月需要支付20美元&#xff0c;并且使用次数有限制。对于那些不想每年花费240美元&#xff08;超过1500元人民币&#xff09;来使用GPT4.0的朋友们来说&#xff0c;还有别的办法吗&#xff1f; 答案是&…...

Dubbo Spring Boot Starter 开发微服务应用

环境要求 系统&#xff1a;Windows、Linux、MacOS JDK 8 及以上&#xff08;推荐使用 JDK17&#xff09; Git IntelliJ IDEA&#xff08;可选&#xff09; Docker &#xff08;可选&#xff09; 项目介绍 在本任务中&#xff0c;将分为 3 个子模块进行独立开发&#xff…...

linux中互斥锁,自旋锁,条件变量,信号量,与freeRTOS中的消息队列,信号量,互斥量,事件的区别

RTOS 对于目前主流的RTOS的任务&#xff0c;大部分都属于并发的线程。 因为MCU上的资源每个任务都是共享的&#xff0c;可以认为是单进程多线程模型。 【freertos】003-任务基础知识 在没有操作系统的时候两个应用程序进行消息传递一般使用全局变量的方式&#xff0c;但是如…...

安装docker服务,配置镜像加速器

文章目录 1.安装docker服务&#xff0c;配置镜像加速器2.下载系统镜像&#xff08;Ubuntu、 centos&#xff09;3.基于下载的镜像创建两个容器 &#xff08;容器名一个为自己名字全拼&#xff0c;一个为首名字字母&#xff09;4.容器的启动、 停止及重启操作5.怎么查看正在运行…...

CF 896 C Willem, Chtholly and Seniorious(珂朵莉树模板)

CF 896 C. Willem, Chtholly and Seniorious(珂朵莉树模板) Problem - C - Codeforces 大意&#xff1a;给出一个区间 &#xff0c; 要求进行四种操作 &#xff0c; 区间加 &#xff0c; 区间第k大 &#xff0c; 区间推平 &#xff0c; 区间求和。 珂朵莉树模板题 &#xff…...

Android Jetpack组件的全方位分析

Jetpack是一个用于简化Android应用程序开发的工具包&#xff0c;包含了一系列的组件和工具。Jetpack包含了很多组件&#xff0c;如LiveData、ViewModel、Room、Data Binding、Navigation等。 Jetpack组件是一种更高级别的抽象&#xff0c;它们可以提供更简洁、更易于使用的API。…...

Prometheus+Grafana+AlertManager监控SpringBoot项目并发送邮件告警通知

文章目录 PrometheusGrafanaAlertManager监控平台搭建新建SpringBoot项目为Prometheus提供指标新建项目&#xff0c;引入依赖新建接口&#xff0c;运行程序 推送指标到pushgateway 开始监控Grafana连接Prometheus数据源导入Grafana模板监控SpringBoot项目 邮件告警通知同系列文…...

猿辅导Motiff亮相IXDC 2023国际体验设计大会,发布新功能获行业高度关注

近日&#xff0c;“IXDC 2023国际体验设计大会”在北京国家会议中心拉开序幕&#xff0c;3000设计师、1000企业、200全球商业领袖&#xff0c;共襄为期5天的用户体验创新盛会。据了解&#xff0c;此次大会是以“设计领导力”为主题&#xff0c;分享全球设计、科技、商业的前沿趋…...

【QT】重写QAbstractLIstModel,使用ListView来显示多列数据

qt提供了几个视图来进行信息的列表显示&#xff0c;QListView可以用来显示继承QStractListModel的字符串列表中的字符串&#xff0c;默认的模型里面只包含一列的内容&#xff1a; 这里以qml为例子&#xff0c;先新建一个qml的项目&#xff0c;示例代码如下&#xff1a; 先创建一…...

【从零学习python 】64. Python正则表达式中re.compile方法的使用详解

文章目录 re.compile方法的使用进阶案例 re.compile方法的使用 在使用正则表达式时&#xff0c;我们可以直接调用re模块的match、search、findall等方法&#xff0c;并传入指定的正则表达式进行匹配。另外&#xff0c;我们还可以使用re.compile方法生成一个正则表达式对象&…...

【FAQ】视频云存储/安防监控EasyCVR视频汇聚平台如何通过角色权限自行分配功能模块?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、…...

基于Spring Boot的社区诊所就医管理系统的设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频&#xff1a; 基于Spring Boot的社区诊所就医管理系统的设计与实现&#xff08;Javaspring bootMySQL&#xff09; 使用技术&#xff1a; 前端&#xff1a;html css javascript jQuery ajax thymeleaf 微信小程序 后端&#xff1a;Java …...

mysql从传统模式切到GTID模式后启动主从,主从异常报错1236

一 前言 MySQL 的主从复制作为一项高可用特性&#xff0c;用于将主库的数据同步到从库&#xff0c;在维护主从复制数据库集群的时候&#xff0c;作为专职的MySQL DBA&#xff0c;笔者相信大多数人都会遇到“Got fatal error 1236 from master when reading data from binary …...

Qt+C++串口调试接收发送数据曲线图

程序示例精选 QtC串口调试接收发送数据曲线图 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<QtC串口调试接收发送数据曲线图>>编写代码&#xff0c;代码整洁&#xff0c;规则&…...

【从零学习python 】75. TCP协议:可靠的面向连接的传输层通信协议

文章目录 TCP协议TCP通信的三个步骤TCP特点TCP与UDP的区别TCP通信模型进阶案例 TCP协议 TCP协议&#xff0c;传输控制协议&#xff08;英语&#xff1a;Transmission Control Protocol&#xff0c;缩写为 TCP&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议…...

IPv4 基础概念

IPv4 基础概念 IPv4 广播地址 广播是一种通信方式&#xff0c;用于将数据包发送到同一网络中的所有设备。在广播中&#xff0c;数据包被发送到特殊的广播地址&#xff0c;例如在IPv4中&#xff0c;广播地址通常为特定子网的广播地址&#xff08;例如&#xff0c;192.168.1.0/…...

stm32片内读写项目总结(多字节读写tongxindu)

1.flash操作驱动程序 a头文件 #ifndef FLASH_H #define FLASH_H #include “stm32f4xx.h” #define BOARD_NUM_ADDR 0x0800C000 #define STM32_FLASH_BASE 0x08000000 //STM32 FLASH的起始地址 #define FLASH_WAITETIME 50000 //FLASH等待超时时间 //FLASH 扇区的起始地址…...

ECMAScript6 简介及拓展

ECMAScript简介 JavaScript是大家所了解的语言名称&#xff0c; 但它的正式名称叫做ECMAScript。 1996年11月&#xff0c; JavaScript的创造者网景公司将JavaScript提交给国际化组织 ECMA(欧洲计算机制造联合会)&#xff0c; 希望这种语言能够成为国际标准。 随后 ECMA 发布…...

可视化构建包分析报告

一、webpack 使用 webpack-bundle-analyzer 插件即可。 安装&#xff1a;npm install webpack-bundle-analyzer -D 使用&#xff1a;new BundleAnalyzerPlugin(options?: object) Name Type Description analyzerMode One of: server, static, json, disabled Default: se…...

统一git使用方法,git状态变迁图,git commit提交规范

目录 说明 统一git使用方法 git状态变迁图 git commit 提交规范 说明 多次工作中多名员工不懂git多次技术分享&#xff0c;自行查资料学习git并使用&#xff0c;会出现使用各种偏僻的命令&#xff0c;异常问题无法解决&#xff1b;或出现带url的git合并提交。主要是学的不…...

react与vue的区别

React和Vue.js是两个流行的JavaScript库/框架&#xff0c;用于构建用户界面。以下是React和Vue之间的一些主要区别&#xff1a; 学习曲线&#xff1a;Vue.js对于新手来说比React更容易学习和上手。 构建方式&#xff1a;React强调组件的可重用性&#xff0c;而Vue.js更注重模板…...

成功解决SQL 错误 [22000]: 第3 行附近出现错误: 试图修改自增列[ID](达梦数据库)

当我们使用工具来手动修改自增列的自增ID时&#xff0c;可能会报如下异常 SQL 错误 [22000]: 第3 行附近出现错误:试图修改自增列[ID] 解决办法&#xff1a; 可以使用SQL语句来修改 ALTER TABLE "fdw"."SYSTEM_DICT_TYPE" DROP IDENTITY; UPDATE "f…...

【算法】活用双指针完成复写零操作

Problem: 1089. 复写零 文章目录 题目解析算法原理分析找到最后一个复写的位置从后往前进行复写操作 代码展示 题目解析 首先我们来分析一下本题的题目意思 可以看到题目中给到了一个数组&#xff0c;意思是让我们将数组中的零元素都复写一遍&#xff0c;然后将其余的元素向后平…...

【面试高频题】难度 3/5,字典树热门运用题

题目描述 这是 LeetCode 上的 「745. 前缀和后缀搜索」 &#xff0c;难度为 「困难」。 Tag : 「字典树」 设计一个包含一些单词的特殊词典&#xff0c;并能够通过前缀和后缀来检索单词。 实现 WordFilter 类&#xff1a; WordFilter(string[] words) 使用词典中的单词 words 初…...

vue base64图片转file流 下载到本地 或者上传

<img :src".img" style"max-width:280px;max-height: 280px;margin: auto;" />// base64 转file const base64ToFile()>{let byImg atob(form.img); // 解码base64let n byImg.lengthlet a new Uint8Array(n);while…...

无涯教程-PHP - 简介

PHP 7是最期待的&#xff0c;它是PHP编程语言的主要功能版本。 PHP 7于2015年12月3日发布。本教程将以简单直观的方式教您PHP 7的新功能及其用法。 无涯教程假设您已经了解旧版本的PHP&#xff0c;现在就可以开始学习PHP 7的新功能。 使用下面的示例- <html><head&…...

web基础+HTTP协议+httpd详细配置

目目录录 一、Web基础1.1 HTML概述1.1.1 HTML的文件结构1.1.2 HTML中的部分基本标签 1.3 MIME1.4 URI 和 URL1.4 定义1.4.2 URI 和 URL 的区别 二、静态资源和动态资源2.1 静态资源2.2 动态资源 三、HTTP协议3.1 HTTP协议简介3.2 HTTP协议版本3.2 HTTP方法3.3 HTTP请求访问的完…...

【sql】MongoDB的增删改查分页条件等

【sql】MongoDB的增删改查分页条件等 //增 //新增数据2种方式 db.msg.save({"name":"springboot&#x1f600;"}); db.msg.insert({"name":"mango good"}); db.msg.save({"name":"springboot",type:"工具书&…...

我的动态归纳(便于搜索)

linux dns配置文件是“/etc/resolv.conf”&#xff0c;该配置文件用于配置DNS客户&#xff0c;它包含了主机的域名搜索顺序和DNS/服务器的地址&#xff0c;每一行包括一个关键字和一个或多个空格隔开的参数。 /etc/resolv.conf &#xff08;不配置就不能域名解析&#xff09; 可…...

langchain ChatGPT AI私有知识库

企业知识库 原理就是把文档变为向量数据库&#xff0c;然后搜索向量数据库&#xff0c;把相似的数据和问题作为prompt&#xff0c; 输入到大模型&#xff0c;再利用GPT强大的自然语言处理、推理和分析等方面的能力将答案返回给用户 什么是langchain? langchain是一个强大的…...

API接口常用数据格式Json,Json的定义和XML的区别

现在程序员还有谁不知道 JSON 吗&#xff1f;无论对于前端还是后端&#xff0c;JSON 都是一种常见的数据格式。那么 JSON 到底是什么呢&#xff1f; JSON 的定义 JSON &#xff08;JavaScript Object Notation&#xff09; &#xff0c;是一种轻量级的数据交换格式。它的使用…...

密码学学习笔记(二十一):SHA-256与HMAC、NMAC、KMAC

SHA-256 SHA-2是广泛应用的哈希函数&#xff0c;并且有不同的版本&#xff0c;这篇博客主要介绍SHA-256。 SHA-256算法满足了哈希函数的三个安全属性&#xff1a; 抗第一原像性 - 无法根据哈希函数的输出恢复其对应的输入。抗第二原像性 - 给定一个输入和它的哈希值&#xf…...

操作系统-笔记-第四章-文件管理

目录 四、第四章——文件管理 1、文件管理——基础概念 &#xff08;1&#xff09;文件结构 &#xff08;2&#xff09;操作系统提供的接口 &#xff08;3&#xff09;总结 2、文件的逻辑结构 &#xff08;1&#xff09;有结构文件&#xff08;类似SQL表文件&#xff09…...

【MiniGUI】文字颜色实现透明度变化

在MiniGUi中&#xff0c;输出文字时有时候希望文字带有透明度信息&#xff0c; 即文字能够透出下面的图像来。 很自然地想到&#xff0c;设置颜色时&#xff0c;将颜色设置为带有透明度的颜色&#xff1a; SelectFont(hdc, mg_font);SetTextColor(hdc, RGBA2Pixel(HDC_SCREEN, …...

css中元素加定位之后到一定距离元素会变小

css中元素加定位之后到一定距离元素会变小 主要原因&#xff1a;元素没有加宽高 .swiperWrapper .active{bottom: 380px;left: 215px;z-index: 10; } .swiperWrapper .next{bottom: 170px;left: 7%;z-index: 20; } .swiperWrapper .prev{bottom: 360px;left: 0%;z-index: 30;…...

Java 语言实现冒泡排序

Java 语言实现冒泡排序 介绍 冒泡排序是一种简单直观的排序算法&#xff0c;它重复地比较相邻的两个元素&#xff0c;如果顺序错误就交换它们&#xff0c;直到没有需要交换的元素为止。冒泡排序的思路是通过每一轮的比较将最大&#xff08;或最小&#xff09;的元素逐渐“冒泡…...

面向对象单选题

下列选项中不属于面向对象的特征的是&#xff08;B&#xff09; A、封装性 B、安全性 C、继承性 D、多态性 在Java中,关于继承&#xff0c;类只支持&#xff08;A&#xff09; A、单继承 B、多继承 C、两个都可以 D、两个都不可以 用于定义成员的访问控制权的一组关键字…...