当前位置: 首页 > news >正文

ARM DIY(二)配置晶振频率

文章目录

    • 前言
    • 串口乱码问题定位
    • 内核修改晶振频率
    • uboot 修改晶振频率
    • 番外篇

前言

上篇文章《ARM DIY 硬件调试》介绍了 DIY ARM 板的基础硬件焊接,包括电源、SOC、SD 卡座等,板子已经可以跑起来了。
但是发现串口乱码,今天就来解决串口乱码问题。

串口乱码问题定位

串口出现乱码,通常是波特率设置的不对,仔细检查了下
设备树配置的波特率

	chosen {stdout-path = "serial0:115200n8";};

和 xshell 的串口参数
在这里插入图片描述
都是 115200,配置没有问题。
想到是不是晶振实际频率和配置的不一致。
在这里插入图片描述 在这里插入图片描述
板子上焊接的是 26MHz,设备树中配置的是 24000000,这样导致系统时钟不正确,最终产生的串口波特率不是 115200,所以乱码。

内核修改晶振频率

内核修改晶振频率直接修改上述红框中设备树参数就行了

		osc24M: osc24M_clk {#clock-cells = <0>;compatible = "fixed-clock";// clock-frequency = <24000000>;clock-frequency = <26000000>; // 晶振频率实际为 26MHzclock-accuracy = <50000>;clock-output-names = "osc24M";};

上电发现内核串口输出已经正常,但是 uboot 串口输出还是乱码

!ݿN¡¬,º¢§ʖʘʛS#⑭®ª¨ J¥*T ¤VնӝջᏎݵ6£¤¤Q¨©#ճ鎖Ƙڐ񵊖ʘʛW#⑥ª&ٴ7䙵Rų䝼w儑 £¥u¡ĭ±셲Re³¢«-*A ƕ#Q󉵫¬®KՐIAª9כD:Ѣ#񭫘N¥®EA«陝£󅲪{A¡cѺ앥CA¶כA¦(Ωº	^Ųݷ¶LɐY½V썐®ͱ-CAµkպ䝵K#񦹋Ű¢­ن*§³)^Ѡʳ*V隂NNѱa♂QH鞂VJաa⑂񬸋2ݐ)[ἭݹC]ҡ±/썐©]ي񁴫᳃ٵՁ¦Wݴ#ٹªɹӝ A±-娝·Kþ$þ񹪋͸ӝŲ/Gѷ;A²º¯7aª򥩃A´9+;ō񢕙¶*sAµ«$麅񥔝´VU¢𩑖骩)ݷűź#񘬖񴷖˅¡¢ِº厙Қa£*αUю)ͳ=+썐ߥ±Ꭼҙ&񔗫ښ¢.¯取6ɐ.º厥«#]³ª¨ґ帩ɱªِ²폁²6բ1Uю麩Sɐ¬𒅒峩ѿ񎤢*ѻ鸷A¹V䍐[A¦A²𾭂¸3⑂6¤ɱ{A¤-/7ՐE͵ӝCͱݰύ%傧U ѡz+썐]Jٱºن#٠   0.000000] Booting Linux on physical CPU 0x0
[    0.000000] Linux version 5.3.5 (liyongjun@Box) (gcc version 12.3.0 (Buildroot 2023.08-rc1-102-g51dbde549e)) #3 SMP Thu Aug 17 04:19:40 CST 2023
[    0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
[    0.000000] CPU: div instructions available: patching division code
[    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[    0.000000] OF: fdt: Machine model: Lichee Pi Zero with Dock
[    0.000000] Memory policy: Data cache writealloc
[    0.000000] cma: Reserved 16 MiB at 0x41c00000
[    0.000000] psci: probing for conduit method from DT.
[    0.000000] psci: Using PSCI v0.1 Function IDs from DT
[    0.000000] percpu: Embedded 15 pages/cpu s30412 r8192 d22836 u61440
[    0.000000] Built 1 zonelists, mobility grouping on.  Total pages: 16256
[    0.000000] Kernel command line: console=ttyS0,115200 panic=5 console=tty0 rootwait root=/dev/mmcblk0p2 earlyprintk rw
[    0.000000] Dentry cache hash table entries: 8192 (order: 3, 32768 bytes, linear)
[    0.000000] Inode-cache hash table entries: 4096 (order: 2, 16384 bytes, linear)
[    0.000000] mem auto-init: stack:off, heap alloc:off, heap free:off

uboot 修改晶振频率

那就接着修改 uboot 晶振频率配置,同样,修改设备树参数

		osc24M: osc24M_clk {#clock-cells = <0>;compatible = "fixed-clock";// clock-frequency = <24000000>;clock-frequency = <26000000>;clock-accuracy = <50000>;clock-output-names = "osc24M";};

上电,发现 uboot 串口打印还是乱码。查看 uboot 编译选项,确认 uboot 启用了设备树,并且修改的设备树参数也已经被 C 代码解析到了是 26000000,不过串口还是乱码。
最终通过修改 .h 文件中的 CONFIG_SYS_NS16550_CLK 参数,成功修复了 uboot 串口乱码的问题
在这里插入图片描述
ns16550 是很多 SOC 使用的串口芯片 IP。
在上面截图的最后可以看到 #define COUNTER_FREQUENCY 24000000 这个配置,这个参数仍然保持 24000000 而 uboot 串口也不会乱码,说明 uboot 的串口时钟设置并不像 kernel 那样基于 CPU 时钟,而是有自己单独的一个参数 CONFIG_SYS_NS16550_CLK,这也解释了为什么一开始配置 uboot 设备树的 CPU 时钟仍然解决不了串口打印乱码的问题。
最终 uboot 和 kernel 的串口打印都正常了

U-Boot SPL 2022.01 (Aug 19 2023 - 23:03:28 +0800)
DRAM: 64 MiB
Trying to boot from MMC1U-Boot 2022.01 (Aug 19 2023 - 23:03:28 +0800) Allwinner TechnologyCPU:   Allwinner V3s (SUN8I 1681)
Model: Lichee Pi Zero
DRAM:  64 MiB
WDT:   Not starting watchdog@1c20ca0
MMC:   mmc@1c0f000: 0
Loading Environment from FAT... Unable to read "uboot.env" from mmc0:1... In:    serial@1c28000
Out:   serial@1c28000
Err:   serial@1c28000
Net:   No ethernet found.
Hit any key to stop autoboot:  0 
switch to partitions #0, OK
mmc0 is current device
Scanning mmc 0:1...
Found U-Boot script /boot.scr
292 bytes read in 2 ms (142.6 KiB/s)
## Executing script at 41900000
4183712 bytes read in 349 ms (11.4 MiB/s)
9041 bytes read in 4 ms (2.2 MiB/s)
Kernel image @ 0x41000000 [ 0x000000 - 0x3fd6a0 ]
## Flattened Device Tree blob at 41800000Booting using the fdt blob at 0x41800000Loading Device Tree to 42dfa000, end 42dff350 ... OKStarting kernel ...[    0.000000] Booting Linux on physical CPU 0x0
[    0.000000] Linux version 5.3.5 (liyongjun@Box) (gcc version 12.3.0 (Buildroot 2023.08-rc1-102-g51dbde549e)) #3 SMP Thu Aug 17 04:19:40 CST 2023
[    0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
[    0.000000] CPU: div instructions available: patching division code
[    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[    0.000000] OF: fdt: Machine model: Lichee Pi Zero with Dock
[    0.000000] Memory policy: Data cache writealloc
[    0.000000] cma: Reserved 16 MiB at 0x41c00000
[    0.000000] psci: probing for conduit method from DT.
[    0.000000] psci: Using PSCI v0.1 Function IDs from DT
[    0.000000] percpu: Embedded 15 pages/cpu s30412 r8192 d22836 u61440
[    0.000000] Built 1 zonelists, mobility grouping on.  Total pages: 16256
[    0.000000] Kernel command line: console=ttyS0,115200 panic=5 console=tty0 rootwait root=/dev/mmcblk0p2 earlyprintk rw
[    0.000000] Dentry cache hash table entries: 8192 (order: 3, 32768 bytes, linear)
[    0.000000] Inode-cache hash table entries: 4096 (order: 2, 16384 bytes, linear)
[    0.000000] mem auto-init: stack:off, heap alloc:off, heap free:off

番外篇

在一开始没有找到解决 uboot 串口打印乱码问题办法的时候,又想通过 uboot 本身来看出一些端倪,怎么办呢?我想到了一个办法:因为实际晶振频率从 24MHz 变成了 26MHz,那么串口波特率就会从 115200 变成(115200 / 24 * 26 = )124800,那就把 xshell 的串口波特率设置成 124800
在这里插入图片描述
这样串口打印也不乱码了

U-Boot 2022.01 (Aug 19 2023 - 23:03:28 +0800) Allwinner TechnologyCPU:   Allwinner V3s (SUN8I 1681)
Model: Lichee Pi Zero
DRAM:  64 MiB
WDT:   Not starting watchdog@1c20ca0
MMC:   mmc@1c0f000: 0
Loading Environment from FAT... Unable to read "uboot.env" from mmc0:1... In:    serial@1c28000
Out:   serial@1c28000
Err:   serial@1c28000
Net:   No ethernet found.
Hit any key to stop autoboot:  0 
=> 
=> 
=> printenv 
arch=arm
baudrate=115200
board=sunxi
board_name=sunxi
boot_a_script=load ${devtype} ${devnum}:${distro_bootpart} ${scriptaddr} ${prefix}${script}; source ${scriptaddr}
boot_efi_binary=load ${devtype} ${devnum}:${distro_bootpart} ${kernel_addr_r} efi/boot/bootarm.efi; if fdt addr ${fdt_addr_r}; then bootefi ${kernel_addr_r} ${fdt_addr_r};else bootefi ${kernel_addr_r} ${fdtcontroladdr};fi
boot_efi_bootmgr=if fdt addr ${fdt_addr_r}; then bootefi bootmgr ${fdt_addr_r};else bootefi bootmgr;fi
boot_extlinux=sysboot ${devtype} ${devnum}:${distro_bootpart} any ${scriptaddr} ${prefix}${boot_syslinux_conf}
boot_prefixes=/ /boot/
boot_script_dhcp=boot.scr.uimg
boot_scripts=boot.scr.uimg boot.scr
boot_syslinux_conf=extlinux/extlinux.conf
boot_targets=fel mmc0 pxe dhcp 
bootcmd=run distro_bootcmd
bootcmd_dhcp=devtype=dhcp; if dhcp ${scriptaddr} ${boot_script_dhcp}; then source ${scriptaddr}; fi;setenv efi_fdtfile ${fdtfile}; if test -z "${fdtfile}" -a -n "${soc}"; then setenv efi_fdtfile ${soc}-${board}${boardver}.dtb; fi; setenv efi_old_vci ${bootp_vci};setenv efi_old_arch ${bootp_arch};setenv bootp_vci PXEClient:Arch:00010:UNDI:003000;setenv bootp_arch 0xa;if dhcp ${kernel_addr_r}; then tftpboot ${fdt_addr_r} dtb/${efi_fdtfile};if fdt addr ${fdt_addr_r}; then bootefi ${kernel_addr_r} ${fdt_addr_r}; else bootefi ${kernel_addr_r} ${fdtcontroladdr};fi;fi;setenv bootp_vci ${efi_old_vci};setenv bootp_arch ${efi_old_arch};setenv efi_fdtfile;setenv efi_old_arch;setenv efi_old_vci;
bootcmd_fel=if test -n ${fel_booted} && test -n ${fel_scriptaddr}; then echo '(FEL boot)'; source ${fel_scriptaddr}; fi
bootcmd_mmc0=devnum=0; run mmc_boot
bootcmd_pxe=dhcp; if pxe get; then pxe boot; fi
bootdelay=2
bootm_size=0x2e00000
console=ttyS0,115200
cpu=armv7
dfu_alt_info_ram=kernel ram 0x41000000 0x1000000;fdt ram 0x41800000 0x100000;ramdisk ram 0x41C00000 0x4000000
distro_bootcmd=for target in ${boot_targets}; do run bootcmd_${target}; done
efi_dtb_prefixes=/ /dtb/ /dtb/current/
fdt_addr_r=0x41800000
fdtcontroladdr=43d71610
fdtfile=sun8i-v3s-licheepi-zero.dtb
fdtoverlay_addr_r=0x41B00000
kernel_addr_r=0x41000000
load_efi_dtb=load ${devtype} ${devnum}:${distro_bootpart} ${fdt_addr_r} ${prefix}${efi_fdtfile}
loadaddr=0x42000000
mmc_boot=if mmc dev ${devnum}; then devtype=mmc; run scan_dev_for_boot_part; fi
mmc_bootdev=0
partitions=name=loader1,start=8k,size=32k,uuid=${uuid_gpt_loader1};name=loader2,size=984k,uuid=${uuid_gpt_loader2};name=esp,size=128M,bootable,uuid=${uuid_gpt_esp};name=system,size=-,uuid=${uuid_gpt_system};
pxefile_addr_r=0x41A00000
ramdisk_addr_r=0x41C00000
scan_dev_for_boot=echo Scanning ${devtype} ${devnum}:${distro_bootpart}...; for prefix in ${boot_prefixes}; do run scan_dev_for_extlinux; run scan_dev_for_scripts; done;run scan_dev_for_efi;
scan_dev_for_boot_part=part list ${devtype} ${devnum} -bootable devplist; env exists devplist || setenv devplist 1; for distro_bootpart in ${devplist}; do if fstype ${devtype} ${devnum}:${distro_bootpart} bootfstype; then run scan_dev_for_boot; fi; done; setenv devplist
scan_dev_for_efi=setenv efi_fdtfile ${fdtfile}; if test -z "${fdtfile}" -a -n "${soc}"; then setenv efi_fdtfile ${soc}-${board}${boardver}.dtb; fi; for prefix in ${efi_dtb_prefixes}; do if test -e ${devtype} ${devnum}:${distro_bootpart} ${prefix}${efi_fdtfile}; then run load_efi_dtb; fi;done;run boot_efi_bootmgr;if test -e ${devtype} ${devnum}:${distro_bootpart} efi/boot/bootarm.efi; then echo Found EFI removable media binary efi/boot/bootarm.efi; run boot_efi_binary; echo EFI LOAD FAILED: continuing...; fi; setenv efi_fdtfile
scan_dev_for_extlinux=if test -e ${devtype} ${devnum}:${distro_bootpart} ${prefix}${boot_syslinux_conf}; then echo Found ${prefix}${boot_syslinux_conf}; run boot_extlinux; echo SCRIPT FAILED: continuing...; fi
scan_dev_for_scripts=for script in ${boot_scripts}; do if test -e ${devtype} ${devnum}:${distro_bootpart} ${prefix}${script}; then echo Found U-Boot script ${prefix}${script}; run boot_a_script; echo SCRIPT FAILED: continuing...; fi; done
scriptaddr=0x41900000
serial#=12c0000127c26729
soc=sunxi
stderr=serial@1c28000
stdin=serial@1c28000
stdout=serial@1c28000
uuid_gpt_esp=c12a7328-f81f-11d2-ba4b-00a0c93ec93b
uuid_gpt_system=69dad710-2ce4-4e3c-b16c-21a1d49abed3Environment size: 4258/131068 bytes
=> 

然后通过 uboot 的串口打印以及环境变量来找寻更多信息,帮助解决问题。

相关文章:

ARM DIY(二)配置晶振频率

文章目录 前言串口乱码问题定位内核修改晶振频率uboot 修改晶振频率番外篇 前言 上篇文章《ARM DIY 硬件调试》介绍了 DIY ARM 板的基础硬件焊接&#xff0c;包括电源、SOC、SD 卡座等&#xff0c;板子已经可以跑起来了。 但是发现串口乱码&#xff0c;今天就来解决串口乱码问…...

高等数学:线性代数-第三章

文章目录 第3章 矩阵的初等变换与线性方程组3.1 矩阵的初等变换3.2 矩阵的秩3.3 方程组的解 第3章 矩阵的初等变换与线性方程组 3.1 矩阵的初等变换 矩阵的初等变换 下面三种变换称为矩阵的初等变换 对换两行&#xff08;列&#xff09;&#xff0c;记作 r i ↔ r j ( c i …...

深入理解 SQL 注入攻击原理与防御措施

系列文章目录 文章目录 系列文章目录前言一、SQL 注入的原理二、防御 SQL 注入攻击的措施1. 使用参数化查询2.输入验证与过滤3.最小权限原则4.不要动态拼接 SQL5.ORM 框架6.转义特殊字符三、实例演示总结前言 SQL 注入是一种常见的网络攻击方式,攻击者通过在输入框等用户交互…...

QT5.12.12通过ODBC连接到GBase 8s数据库(CentOS)

本示例使用的环境如下&#xff1a; 硬件平台&#xff1a;x86_64&#xff08;amd64&#xff09;操作系统&#xff1a;CentOS 7.8 2003数据库版本&#xff08;含CSDK&#xff09;&#xff1a;GBase 8s V8.8 3.0.0_1 为什么使用QT 5.12.10&#xff1f;该版本包含QODBC。 1&#…...

爱校对发布全新PDF校对工具,为用户带来更为便捷的校正体验

随着数字化文档使用的普及&#xff0c;PDF格式已经成为最为广泛使用的文件格式之一。为满足广大用户对于高效、准确PDF文档校对的需求&#xff0c;爱校对团队经过深入研发&#xff0c;正式推出全新的PDF校对工具&#xff01; 这一全新工具针对PDF文件格式进行了深度优化&#…...

记录protocol buffers Mac安装

使用brew安装最新的protobuf 在Mac 上安装&#xff0c;使用brew 可以安装最新的protobuf。这个也比较简单&#xff0c;简单说一下。 首先先检查一下是否安装了brew。如果没有安装brew的话&#xff0c;请先安装brew.可以通过brew --version来检查 使用brew install protobuf 来…...

基于Jenkins自动打包并部署docker、PHP环境,ansible部署-------从小白到大神之路之学习运维第86天

第四阶段提升 时 间&#xff1a;2023年8月23日 参加人&#xff1a;全班人员 内 容&#xff1a; 基于Jenkins部署docker、PHP环境 目录 一、环境部署 &#xff08;一&#xff09;实验环境&#xff0c;服务器设置 &#xff08;二&#xff09;所有主机关闭防火墙和selinu…...

【附安装包】Midas Civil2019安装教程

软件下载 软件&#xff1a;Midas Civil版本&#xff1a;2019语言&#xff1a;简体中文大小&#xff1a;868.36M安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU2.5GHz 内存4G(或更高&#xff09;下载通道①百度网盘丨64位下载链接&#xff1a;https://pan.…...

Apache StreamPark系列教程第一篇——安装和体验

一、StreamPark介绍 实时即未来,在实时处理流域 Apache Spark 和 Apache Flink 是一个伟大的进步,尤其是Apache Flink被普遍认为是下一代大数据流计算引擎, 我们在使用 Flink & Spark 时发现从编程模型, 启动配置到运维管理都有很多可以抽象共用的地方, 我们将一些好的经验…...

mysql replace insert update delete

目录 mysql replace && insert && update && delete replace mysql replace && insert && update && delete replace 我们在使用数据库时可能会经常遇到这种情况。如果一个表在一个字段上建立了唯一索引&#xff0c;当我们再向…...

实现SSM简易商城项目的商品查询功能

实现SSM简易商城项目的商品查询功能 介绍 在SSM&#xff08;SpringSpringMVCMyBatis&#xff09;框架下&#xff0c;我们可以轻松地实现一个简易商城项目。本博客将重点介绍如何实现商品查询功能&#xff0c;帮助读者了解并掌握该功能的开发过程。 步骤 1. 创建数据库表 首…...

视频批量剪辑矩阵分发系统源码开源分享----基于PHP语言

批量剪辑视频矩阵分发&#xff1a; 短视频seo主要基于抖音短视频平台&#xff0c;为企业实现多账号管理&#xff0c;视频分发&#xff0c;视频批量剪辑&#xff0c;抖音小程序搭建&#xff0c;企业私域转化等&#xff0c;本文主要介绍短视频矩阵系统抖音小程序开发详细及注意事…...

亚信科技AntDB数据库通过GB 18030-2022最高实现级别认证,荣膺首批通过该认证的产品之列

近日&#xff0c;亚信科技AntDB数据库通过GB 18030-2022《信息技术 中文编码字符集》最高实现级别&#xff08;级别3&#xff09;检测认证&#xff0c;成为首批通过该认证的数据库产品之一。 图1&#xff1a;AntDB通过GB 18030-2022最高实现级别认证 GB 18030《信息技术 中文编…...

第11章 优化多线程应用程序

对软件来说&#xff0c;为持续增长的CPU核数做好准备&#xff0c;对应用程序在未来的成功至关重要。 11.1 性能扩展和开销 通过可伸缩定律将计算单元&#xff08;线程&#xff09;之间的通信描述为影响性能的另一个门控因素。通用可伸缩定律描述性能劣化由多个因素导致&#…...

分布式下的session共享问题

首页我们确定在分布式的情况下session是不能共享的。 1.不同的服务&#xff0c;session不能共享&#xff0c;也就是微服务的情况下 2.同一服务在分布式情况&#xff0c;session同样不能共享&#xff0c;也会是分布式情况 分布式下session共享问题解决方案(域名相同) 1.session复…...

webrtc的Sdp中的Plan-b和UnifiedPlan

在一些类似于视频会议场景下&#xff0c;媒体会话参与者需要接收或者发送多个流&#xff0c;例如一个源端&#xff0c;同时发送多个左右音轨的音频&#xff0c;或者多个摄像头的视频流&#xff1b;在2013年&#xff0c;提出了2个不同的SDP IETF草案Plan B和Unified Plan&#x…...

LLM-Rec:基于提示大语言模型的个性化推荐

1. 基本信息 论文题目:LLM-Rec: Personalized Recommendation via Prompting Large Language Models 作者:Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Jiebo Luo 机构:University of Rochester, University of California Los Angeles, Meta AI, University of Ro…...

microsoft -en - us 无法卸载

因为office2013 有漏洞&#xff0c;要进行升级&#xff0c;弄了个office2016&#xff0c;提示无法安装&#xff0c; microsoft visio -en - us 即点即用的存在。点击各种卸载&#xff0c;都无法生效。 再去搜了下软件使用评论&#xff0c;里面提到geek 可以卸载&#xff0c;下…...

day43参与通信的服务器

1.题目描述 这里有一幅服务器分布图&#xff0c;服务器的位置标识在 m * n 的整数矩阵网格 grid 中&#xff0c;1 表示单元格上有服务器&#xff0c;0 表示没有。 如果两台服务器位于同一行或者同一列&#xff0c;我们就认为它们之间可以进行通信。 请你统计并返回能够与至少…...

K8S如何部署ZooKeeper以及如何进行ZooKeeper的平滑替换

前言 在之前的章节中&#xff0c;我们已经成功地将Dubbo项目迁移到了云环境。在这个过程中&#xff0c;我们选择了单机ZooKeeper作为注册中心。接下来&#xff0c;我们将探讨如何将单机ZooKeeper部署到云端&#xff0c;以及在上云过程中可能遇到的问题及解决方案。 ZooKeeper…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...