MDTA模块(Restormer)
From a layer normalized tensor Y ∈ R H ^ × W ^ × C ^ \mathbf{Y} \in \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{C}} Y∈RH^×W^×C^, our MDTA first generates query ( Q ) (\mathbf{Q}) (Q), key ( K ) (\mathbf{K}) (K) and value ( V ) (\mathbf{V}) (V) projections, enriched with local context. It is achieved by applying 1 × 1 1 \times 1 1×1 convolutions to aggregate pixel-wise cross-channel context followed by 3 × 3 3 \times 3 3×3 depth-wise convolutions to encode channel-wise spatial context, yielding Q = W d Q W p Q Y , K = W d K W p K Y \mathbf{Q}=W_d^Q W_p^Q \mathbf{Y}, \mathbf{K}=W_d^K W_p^K \mathbf{Y} Q=WdQWpQY,K=WdKWpKY and V = W d V W p V Y \mathbf{V}=W_d^V W_p^V \mathbf{Y} V=WdVWpVY. Where W p ( ⋅ ) W_p^{(\cdot)} Wp(⋅) is the 1 × 1 1 \times 1 1×1 point-wise convolution and W d ( ⋅ ) W_d^{(\cdot)} Wd(⋅) is the 3 × 3 3 \times 3 3×3 depth-wise convolution. We use bias-free convolutional layers in the network. Next, we reshape query and key projections such that their dot-product interaction generates a transposed-attention map A \mathbf{A} A of size R C ^ × C ^ \mathbb{R}^{\hat{C} \times \hat{C}} RC^×C^, instead of the huge regular attention map of size R H ^ W ^ × H ^ W ^ \mathbb{R}^{\hat{H} \hat{W} \times \hat{H} \hat{W}} RH^W^×H^W^. Overall, the MDTA process is defined as:
X ^ = W p Attention ( Q ^ , K ^ , V ^ ) + X Attention ( Q ^ , K ^ , V ^ ) = V ^ ⋅ Softmax ( K ^ ⋅ Q ^ / α ) \hat{\mathbf{X}}=W_p \operatorname{Attention}(\hat{\mathbf{Q}}, \hat{\mathbf{K}}, \hat{\mathbf{V}})+\mathbf{X}\\ \operatorname{Attention}(\hat{\mathbf{Q}}, \hat{\mathbf{K}}, \hat{\mathbf{V}})=\hat{\mathbf{V}} \cdot \operatorname{Softmax}(\hat{\mathbf{K}} \cdot \hat{\mathbf{Q}} / \alpha) X^=WpAttention(Q^,K^,V^)+XAttention(Q^,K^,V^)=V^⋅Softmax(K^⋅Q^/α)
where X \mathbf{X} X and X ^ \hat{\mathbf{X}} X^ are the input and output feature maps; Q ^ ∈ R H ^ W ^ × C ^ ; K ^ ∈ R C ^ × H ^ W ^ ; \hat{\mathbf{Q}} \in \mathbb{R}^{\hat{H} \hat{W} \times \hat{C}} ; \hat{\mathbf{K}} \in \mathbb{R}^{\hat{C} \times \hat{H} \hat{W}} ; Q^∈RH^W^×C^;K^∈RC^×H^W^; and V ^ ∈ R H ^ W ^ × C ^ \hat{\mathbf{V}} \in \mathbb{R}^{\hat{H} \hat{W} \times \hat{C}} V^∈RH^W^×C^ matrices are obtained after reshaping tensors from the original size R H ^ × W ^ × C ^ \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{C}} RH^×W^×C^. Here, α \alpha α is a learnable scaling parameter to control the magnitude of the dot product of K ^ \hat{\mathbf{K}} K^ and Q ^ \hat{\mathbf{Q}} Q^ before applying the softmax function. Similar to the conventional multi-head SA , we divide the number of channels into ‘heads’ and learn separate attention maps in parallel.
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):def __init__(self, dim, num_heads, bias):super(Attention, self).__init__()self.num_heads = num_headsself.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)def forward(self, x):b, c, h, w = x.shapeqkv = self.qkv_dwconv(self.qkv(x))q, k, v = qkv.chunk(3, dim=1)q = rearrange(q, 'b (head c) h w -> b head c (h w)',head=self.num_heads)k = rearrange(k, 'b (head c) h w -> b head c (h w)',head=self.num_heads)v = rearrange(v, 'b (head c) h w -> b head c (h w)',head=self.num_heads)q = torch.nn.functional.normalize(q, dim=-1)k = torch.nn.functional.normalize(k, dim=-1)attn = (q @ k.transpose(-2, -1)) * self.temperatureattn = attn.softmax(dim=-1)out = (attn @ v)out = rearrange(out, 'b head c (h w) -> b (head c) h w',head=self.num_heads, h=h, w=w)out = self.project_out(out)return out
这段代码并没有实现图中的Norm模块,该模块的实现可以参考Layer Normalization(层规范化)。我们看一下Transformer Block是如何包装的:
class TransformerBlock(nn.Module):def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):super(TransformerBlock, self).__init__()self.norm1 = LayerNorm(dim, LayerNorm_type)self.attn = Attention(dim, num_heads, bias)self.norm2 = LayerNorm(dim, LayerNorm_type)self.ffn = FeedForward(dim, ffn_expansion_factor, bias)def forward(self, x):x = x + self.attn(self.norm1(x))#MDTAx = x + self.ffn(self.norm2(x))return x
可以看到实现的时候是先Norm,然后通过Attention,最后再残差连接,这整个流程才是上图所示
相关文章:
MDTA模块(Restormer)
From a layer normalized tensor Y ∈ R H ^ W ^ C ^ \mathbf{Y} \in \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{C}} Y∈RH^W^C^, our MDTA first generates query ( Q ) (\mathbf{Q}) (Q), key ( K ) (\mathbf{K}) (K) and value ( V ) (\mathbf{V}) (V) project…...
C++ 新特性 | C++ 11 | decltype 关键字
一、decltype 关键字 1、介绍 decltype 是 C11 新增的一个用来推导表达式类型的关键字。和 auto 的功能一样,用来在编译时期进行自动类型推导。引入 decltype 是因为 auto 并不适用于所有的自动类型推导场景,在某些特殊情况下 auto 用起来很不方便&…...
2023国赛数学建模思路 - 案例:退火算法
文章目录 1 退火算法原理1.1 物理背景1.2 背后的数学模型 2 退火算法实现2.1 算法流程2.2算法实现 建模资料 ## 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 退火算法原理 1.1 物理背景 在热力学上&a…...
ubuntu20.04 编译安装运行emqx
文章目录 安装依赖编译运行登录dashboard压力测试 安装依赖 Erlang/OTP OTP 24 或 25 版本 apt-get install libncurses5-dev sudo apt-get install erlang如果安装的erlang版本小于24的话,可以使用如下方法自行编译erlang 1.源码获取 wget https://github.com/erla…...
ARM linux ALSA 音频驱动开发方法
+他V hezkz17进数字音频系统研究开发交流答疑群(课题组) 一 linux ALSA介绍 ALSA (Advanced Linux Sound Architecture) 是一个用于提供音频功能的开源软件框架。它是Linux操作系统中音频驱动程序和用户空间应用程序之间的接口。ALSA 提供了访问声卡硬件的低级别API,并支持…...
设计模式二十三:模板方法模式(Template Method Pattern)
定义了一个算法的框架,将算法的具体步骤延迟到子类中实现。这样可以在不改变算法结构的情况下,允许子类重写算法的特定步骤以满足自己的需求 模版方法使用场景 算法框架固定,但具体步骤可以变化:当你有一个算法的整体结构是固定…...
[Linux]进程状态
[Linux]进程状态 文章目录 [Linux]进程状态进程状态的概念阻塞状态挂起状态Linux下的进程状态孤儿进程 进程状态的概念 了解进程状态前,首先要知道一个正在运行的进程不是无时无刻都在CPU上进行运算的,而是在操作系统的管理下,和其他正在运行…...
Python爬虫逆向实战案例(五)——YRX竞赛题第五题
题目:抓取全部5页直播间热度,计算前5名直播间热度的加和 地址:https://match.yuanrenxue.cn/match/5 cookie中m值分析 首先打开开发者工具进行抓包分析,从抓到的包来看,参数传递了查询参数m与f,同时页面中…...
js识别图片中的文字插件 tesseract.js
使用方法及步骤 1.安装依赖 npm i tesseract.js 2.引入插件 import { createWorker } from tesseract.js;//worker多线程引入这个import Tesseract from tesseract.js;//js单线程引入这个 3.使用插件识别图片 //使用worker线程识别(async () > {console.time()const wo…...
Linux设备驱动移植(设备数)
一、设备数 设备树是一种描述硬件信息的数据结构,Linux内核运行时可以通过设备树将硬件信息直接传递给Linux内核,而不再需要在Linux内核中包含大量的冗余编码 设备数语法概述 设备树文件 dts 设备树源文件 dtsi 类似于头文件,包含一些公共的…...
【移动端开发】鸿蒙系统开发入门:代码示例与详解
一、引言 随着华为鸿蒙系统的日益成熟,越来越多的开发者开始关注这一新兴的操作平台。本文旨在为初学者提供一份详尽的鸿蒙系统开发入门指南,通过具体的代码示例,引导大家逐步掌握鸿蒙开发的基本概念和技术。 二、鸿蒙系统开发基础 鸿蒙系…...
Jenkins的流水线详解
来源:u.kubeinfo.cn/ozoxBB 什么是流水线 声明式流水线 Jenkinsfile 的使用 什么是流水线 jenkins 有 2 种流水线分为声明式流水线与脚本化流水线,脚本化流水线是 jenkins 旧版本使用的流水线脚本,新版本 Jenkins 推荐使用声明式流水线。…...
DIFFEDIT-图像编辑论文解读
文章目录 摘要算法Step1:计算编辑maskStep2:编码Step3:使用mask引导进行解码理论分析: 实验数据集:扩散模型:ImageNet数据集上实验消融实验IMAGEN数据集上实验COCO数据集上实验 结论 论文: 《D…...
【优选算法】—— 字符串匹配算法
在本期的字符串匹配算法中,我将给大家带来常见的两种经典的示例: 1、暴力匹配(BF)算法 2、KMP算法 目录 (一)暴力匹配(BF)算法 1、思想 2、演示 3、代码展示 (二&…...
Docker容器:docker consul的注册与发现及consul-template守护进程
文章目录 一.docker consul的注册与发现介绍1.什么是服务注册与发现2.什么是consul3.docker consul的应用场景4.consul提供的一些关键特性5.数据流向 二.consul部署1.consul服务器(192.168.198.12)(1)建立 Consul 服务启动consul后…...
Blazor 依赖注入妙用:巧设回调
文章目录 前言依赖注入特性需求解决方案示意图 前言 依赖注入我之前写过一篇文章,没看过的可以看看这个。 C# Blazor 学习笔记(10):依赖注入 依赖注入特性 只能Razor组件中注入所有Razor组件在作用域注入的都是同一个依赖。作用域可以看看我之前的文章。 需求 …...
Python 基础 -- Tutorial(三)
7、输入和输出 有几种方法可以表示程序的输出;数据可以以人类可读的形式打印出来,或者写入文件以备将来使用。本章将讨论其中的一些可能性。 7.1 更花哨的输出格式 到目前为止,我们已经遇到了两种写值的方法:表达式语句和print()函数。(第三种方法是使…...
基于STM32的四旋翼无人机项目(二):MPU6050姿态解算(含上位机3D姿态显示教学)
前言:本文为手把手教学飞控核心知识点之一的姿态解算——MPU6050 姿态解算(飞控专栏第2篇)。项目中飞行器使用 MPU6050 传感器对飞行器的姿态进行解算(四元数方法),搭配设计的卡尔曼滤波器与一阶低通滤波器…...
微信小程序开发教学系列(1)- 开发入门
第一章:微信小程序简介与入门 1.1 简介 微信小程序是一种基于微信平台的应用程序,可以在微信内直接使用,无需下载和安装。它具有小巧、高效、便捷的特点,可以满足用户在微信中获取信息、使用服务的需求。 微信小程序采用前端技…...
Nginx虚拟主机(server块)部署Vue项目
需求 配置虚拟主机,实现一个Nginx运行多个服务。 实现 使用Server块。不同的端口号,表示不同的服务;同时在配置中指定,Vue安装包所在的位置。 配置 Vue项目,放在 html/test 目录下。 config中的配置如下…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
