当前位置: 首页 > news >正文

回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测

回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测;
程序包含:单隐含层BP神经网络、双层隐含层IBP神经网络、遗传算法优化IBP神经网络、改进遗传-粒子群算法优化IBP神经网络,结果显示改进的遗传-粒子群算法优化结果更佳。运行环境2018及以上。

模型描述

BP(Back-propagation,反向传播)神经网络是最传统的神经网络。也就是使用了Back-propagation算法的神经网络。请注意他不是时下流行的那一套深度学习。要训练深度学习level的网络你是不可以使用这种算法的。原因我们后面解释。而其实机器学习的bottleneck就是成功的突破了非常深的神经网络无法用BP算法来训练的问题。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  提取权值和阈值
w1 = pop(1 : inputnum * hiddennum);
B1 = pop(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = pop(inputnum * hiddennum + hiddennum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum);
B2 = pop(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);%%  网络赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum );
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1}     = reshape(B1, hiddennum, 1);
net.b{2}     = B2';%%  网络训练
net = train(net, p_train, t_train);%%  仿真测试
t_sim1 = sim(net, p_train);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/129869457%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测

回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现GA-…...

Spring cache整合Redis使用介绍

🍓 简介:java系列技术分享(👉持续更新中…🔥) 🍓 初衷:一起学习、一起进步、坚持不懈 🍓 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正🙏 🍓 希望这篇文章对你有所帮助,欢…...

Metasploit提权

一、bypassuac 用户账户控制(User Account Control,简写作UAC)是微软公司在其Windows Vista及更高版本操作系统中采用的一种控制机制。其原理是通知用户是否对应用程序使用硬盘驱动器和系统文件授权,以达到帮助阻止恶意程序(有时也…...

TypeScript三种特殊类型

1.any类型 说明:any类型代表着可以赋值任意类型 let nickname:any"王二"nickname15nicknametruenicknameundefinednicknamenullnickname{}2.unknown类型 说明:类似any类型;只是不能赋值到其它类型上;除了any和known。…...

如何使用CSS实现一个响应式轮播图?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用CSS实现响应式轮播图的示例⭐ HTML 结构⭐ CSS 样式 (styles.css)⭐ JavaScript 代码 (script.js)⭐ 实现说明⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带…...

数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成

数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成 目录 数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成生成效果基本描述模型描述程序设计参考资料 生成效果 基本描述 1.MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成; 2.马尔科夫链蒙特卡洛方…...

【从零开始的rust web开发之路 二】axum中间件和共享状态使用

系列文章目录 第一章 axum学习使用 第二章 axum中间件使用 文章目录 系列文章目录前言一、中间件是什么二、中间件使用常用中间件使用中间件使用TraceLayer中间件实现请求日志打印自定义中间件 共享状态 前言 上篇文件讲了路由和参数相应相关的。axum还有个关键的地方是中间件…...

Vue操作时间

一、获取现在时间 const currentTime () > {let date new Date();let year date.getFullYear(); //月份从0~11,所以加一let month date.getMonth();let dateArr [date.getMonth() 1,date.getDate(),date.getHours(),date.getMinutes(),date.getSeconds(),…...

数据库——Redis 常见数据结构以及使用场景分析

文章目录 1. string2. list3. hash4. set5. sorted set 你可以自己本机安装 redis 或者通过 redis 官网提供的在线 redis 环境。 1. string 介绍 :string 数据结构是简单的 key-value 类型。虽然 Redis 是用 C 语言写的,但是 Redis 并没有使用 C 的字符串…...

数学建模-规划工具箱yalmip

官网下载 实例 %% yalmip 求解 yalmip clc;clear;close all; %% %sdpvar实型变量 intvar 整形变量 binvar 0-1型变量 psdpvar(3,1); %定义变量 %目标函数 要把求最大值转化为最小值 Objective-p(1)^2p(2)^2-p(2)*p(3);%约束条件 Constraints[0<p<1,(p(1)^2p…...

[SQL挖掘机] - 窗口函数 - 计算移动平均

介绍: 在窗口函数使用时&#xff0c;计算的是累积到当前行的所有的数据的相关操作。 实际上&#xff0c;还可以指定更加详细的汇总范围。该汇总范围称为 框架 (frame)。 其实这里也可以理解成一个窗口, 这个窗口是我们可以进行设置的. 之前我们介绍的窗口函数是根据partition…...

域名和hostname

最近用git克隆远程仓库时总是超时&#xff0c;报错说是代理的问题&#xff0c;但打开和关闭代理都没能解决问题&#xff0c;后面了解到可以关闭git命令的全局代理&#xff1a; git config --global --unset http.proxy git config --global --unset https.proxy如果下次要用的…...

echarts 甘特图一组显示多组数据

<template><el-button type"primary" click"addlin">添加线</el-button><el-button type"success" click"addArea">添加区域</el-button><div ref"echart" id"echart" class&qu…...

1139. 最大的以 1 为边界的正方形;2087. 网格图中机器人回家的最小代价;1145. 二叉树着色游戏

1139. 最大的以 1 为边界的正方形 核心思想&#xff1a;枚举正方向的右下角坐标&#xff08;i&#xff0c;j&#xff09;&#xff0c;然后你只需要判断四条边的连续一的最小个数即可&#xff0c;这里是边求连续一的个数同时求解结果。 087. 网格图中机器人回家的最小代价 核心…...

css滚动条的使用

前言&#xff1a; css滚动条的使用。 1、使用案例1&#xff1a;背景不要&#xff0c;只展示一个滚动条 如果是默认整体&#xff0c;::就够用了&#xff0c;如果是某个元素&#xff0c;可以 .abc:: ,如果是scss这种的 &:: ::-webkit-scrollbar {width: 6px; } ::-webkit…...

优化Python代理爬虫的应用

当我们在资源受限的环境中使用Python代理爬虫时&#xff0c;我们需要采取一些优化措施&#xff0c;以确保程序的高效性和稳定性。在本文中&#xff0c;我将分享一些关于如何优化Python代理爬虫在资源受限环境下的应用的实用技巧。 首先我们来了解&#xff0c;哪些情况算是资源…...

[C++] STL_vector使用与常用接口的模拟实现

文章目录 1、vector的介绍2、vector的使用2.1 vector的定义2.2 vector迭代器的使用2.3 vector的空间增长问题 3、vector的增删查改3.1 push_back&#xff08;重点&#xff09;3.2 pop_back&#xff08;重点&#xff09;3.3 operator[]&#xff08;重点&#xff09;3.4 insert3.…...

【LeetCode】167. 两数之和 II - 输入有序数组 - 双指针

目录标题 2023-8-23 09:25:08 2023-8-23 09:25:08 自己写的不是常量级的额外空间&#xff0c;但是写出来了&#xff0c;记录一下。 下次写的时候&#xff0c;请用双指针。 &#xff08;其实我想了想一想&#xff0c;双指针就没感觉出来&#xff1a;因为我只想到双指针两个都…...

YOLOV1

YOU ONLY LOOK ONCE...

美团增量数仓建设新进展

摘要&#xff1a;本文整理自美团系统研发工程师汤楚熙&#xff0c;在 Flink Forward Asia 2022 实时湖仓专场的分享。本篇内容主要分为四个部分&#xff1a; 建设背景核心能力设计与优化业务实践未来展望 点击查看原文视频 & 演讲PPT 一、美团增量数仓的建设背景 美团数仓架…...

​LeetCode解法汇总2337. 移动片段得到字符串

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 描述&#xff1a; 给你两个字…...

Fpass与Fstop

在MATLAB中&#xff0c;“Fpass”、“Fstop”、"Apass"和"Astop"是数字滤波器设计中常用的参数。它们用于定义滤波器的频率响应和滤波器的性能。 "Fpass"表示通带频率&#xff0c;指的是滤波器允许通过的频率范围。在数字滤波器设计中&#xff0…...

Java快速入门体验

Java快速入门体验 一、环境信息1.1 硬件信息1.2 软件信息 二、Maven安装2.1 Maven介绍2.2 Maven安装包下载2.3 Maven安装2.4 Maven初始化 三、Java安装3.1 JDK下载3.2 JDK安装3.3 JDK初始化 四、开发环境搭建4.1 安装开发工具4.2 关联Maven环境4.2.1 新建JAVA项目4.2.2 Maven与…...

父组件传给子组件的数据是异步的,为什么会导致子组件比父组件先执行?

当父组件传递给子组件的数据是异步获取的时候&#xff0c;可能会导致子组件先执行的问题。这是因为在 Vue 的更新机制中&#xff0c;当组件的模板开始渲染时&#xff0c;会立即触发子组件的创建和挂载过程&#xff0c;而父组件的数据可能还没有完全加载完成。 具体来说&#xf…...

泛型编程 学习笔记

#include "iostream"using namespace std;template<typename T> void Print(T a) {cout << a << endl; }int main() {int a 5;double b 2.3;char c e;string d "sdfasd";Print(a);Print(b);Print(c);Print(d);return 0; } 它可以不用…...

电脑文件删除了可以找回吗?分享一种简单恢复删除电脑文件办法!

电脑文件删除了可以找回吗&#xff1f;可以。在原理上讲电脑删除的文件是有希望恢复的&#xff0c;因为操作系统在删除文件的时候并会不会立刻将文件彻底删除。当文件被删除的时候&#xff0c;其文件记录被删除&#xff0c;并且被文件占用的磁盘空间被标记为空闲。 这样对于用户…...

Pygame编程(4)event模块

Pygame编程&#xff08;4&#xff09;event模块 函数示例 函数 pygame.event.pump 让 Pygame 内部自动处理事件pygame.event.get 从队列中获取事件pygame.event.poll 从队列中获取一个事件pygame.event.wait 等待并从队列中获取一个事件pygame.event.peek 检测某类型事件是否在…...

Python数据采集实战-使用BeautifulSoup框架解析HTML文档并提取所需内容(附源码和实现效果)

实现功能 使用BeautifulSoup框架解析HTML文档并提取所需内容的例子&#xff1a;假设我们要从以下HTML文档中提取所有超链接的链接地址 实现代码 from bs4 import BeautifulSoup import requests# 发送请求并获取HTML文档 url "https://www.baidu.com" response r…...

Java“牵手”天猫商品列表数据,关键词搜索天猫商品数据接口,天猫API申请指南

天猫商城是一个网上购物平台&#xff0c;售卖各类商品&#xff0c;包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取天猫商品列表和商品详情页面数据&#xff0c;您可以通过开放平台的接口或者直接访问天猫商城的网页来获取商品详情信息。以下是两种常用方法的介绍&…...

idea切换Git分支时保存未提交的文件

解决方案 我们现在有三个分支&#xff0c;如下图&#xff1a; 我们目前在tenant分支上进行开发&#xff0c;需要去修复master的Bug&#xff0c;假设我们在tenant分支上修改了一个文件&#xff0c;如下图&#xff1a; 方法一&#xff1a;使用Shelve Changes 1、选中tenant上你不…...

集团公司做网站/网站系统

本文翻译自Google工程师/面试官Alex Golec的文章&#xff1a;Google Interview Questions Deconstructed: The Knight’s Dialer&#xff1b; 来源&#xff1a;实验楼&#xff0c;翻译&#xff1a;实验楼扫地阿姨 原文&#xff1a;https://medium.com/alexgolec/google-intervi…...

网站开发的开题报告模板/北京刚刚宣布比疫情更可怕的事情

决策树算法是非常常用的分类算法&#xff0c;其分类的思路非常清晰&#xff0c;简单易懂。并且它也是一个很基础的算法&#xff0c;集成学习和随机森林算法是以其为基础的。 算法简介 对于决策树算法&#xff0c;其输入是带有标签的数据&#xff0c;输出是一颗决策树。其非叶…...

石家庄房产网上备案查询/seo牛人

表中添加新的列 ALTER TABLE table_name ADD COLUMN comlumnname varchar(10) DEFAULT NULL; 修改表中的列 ALTER TABLE table_name MODIFY COLUMN comlumnname int(2) NOT NULL DEFAULT 2 COMMENT *****说明********; 删除整个表格 DROP TABLE IF EXISTS table_name; …...

深圳微商城网站设计制作/虎扑体育网体育

总体介绍&#xff1a; 倾斜摄影就是将拍好的数据&#xff0c;三角网格化再附上贴图。 目前流行处理软件&#xff1a; Street Factory、PIX4DMapper、smart3D 后期开发平台&#xff1a;超图 Skyline smart3D相关资源网址&#xff1a;http://www.acute3d.com/s3c-viewer/ 其他相关…...

dreamweaver网站建设教程/软文网站名称

显卡天梯图就是显卡的性能排行榜&#xff0c;目前显卡主要有Nvidia(英伟达)和AMD(超微半导体)两大品牌。我们都知道&#xff0c;显卡性能决定了电脑的图像处理能力。对于喜欢玩游戏的电脑用户来说&#xff0c;处理器和显卡是用户最关心的电脑硬件&#xff0c;一块好的显卡对于游…...

做 网络网站/友情链接的获取途径有哪些

在Eclipse下安装Tomcat插件使开发&#xff0c;编译&#xff0c;发布变的相当的简单&#xff0c;下面就说一下安装的过程&#xff0c;很简单的&#xff1a; 1.先下载一个tomcat插件  地址&#xff1a;http://www.eclipsetotale.com/tomcatPlugin/tomcatPluginV321.zip 2.下载完…...