当前位置: 首页 > news >正文

【私有GPT】CHATGLM-6B部署教程

【私有GPT】CHATGLM-6B部署教程

CHATGLM-6B是什么?

ChatGLM-6B是清华大学知识工程和数据挖掘小组(Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University)发布的一个开源的对话机器人。根据官方介绍,这是一个千亿参数规模的中英文语言模型。并且对中文做了优化。本次开源的版本是其60亿参数的小规模版本,约60亿参数,本地部署仅需要6GB显存。

项目地址: https://github.com/THUDM/ChatGLM-6B

我们也可以访问他的体验版

https://chatglm.cn/

image-20230819161111128

ChatGLM API申请:https://open.bigmodel.cn/

image-20230821002914324

算力云

注册地址:https://www.autodl.com/

注册可参考我的这篇文章

https://zhuanlan.zhihu.com/p/644911677

AutoDL是一个GPU租用平台,有各种型号的服务器可以选择。网络无要求,部署简单,比较稳定,价格也还好。

对电脑系统没有要求,无论是Mac电脑还是低配的windows电脑,完全云端部署,自己租服务器,浏览器打开即可。全部在云端完成,有很多服务器可以选择,可以根据自己需求租相应配置的服务器。

部署教程

项目硬件要求

image-20230819162505504

租用一台机器

租用一台机器

这个配置按照我来说是完全够用了。配置仅供参考

不知道怎么选的话,可以看这个链接 https://www.autodl.com/docs/gpu/?spm=a2c6h.12873639.article-detail.147.11146459CRKD9O

选择镜像

选择社区镜像

选择社区镜像

CHATGLM-6B

然后点击右下角的立即创建

image-20230820230750888

就会跳转到此页面,等待实例创建完成

创建实例

创建完成后

image-20230820230943510

温馨提示:实例不用后一定要记得关机!!!

就会进入此页面

image-20230820231215362

启动web服务

执行以下命令

cd ChatGLM-6B/python web_demo.py 

默认开放端口 6006

访问服务

然后回到上个页面

自定义服务

image-20230820231525244

这样就可以看见你的服务了

image-20230820231725668

使用实例

image-20230820231837775

启动api服务

由于示例只会对我们开放6006端口,所以我们需要将api服务改为6006端口访问,当然你也可以采用NGINX的方式,这里就只介绍修改端口的方式了。

vi api.py

image-20230821001523643

完成后保存

完成后保存

运行命令

python api.py

image-20230821001727098

和访问web的一样操作步骤一样,参考web服务的访问服务模块

请求示例:

curl -X POST "http://127.0.0.1:8000" \-H 'Content-Type: application/json' \-d '{"prompt": "你好", "history": []}'

当前这里的 http://127.0.0.1:8000修改为你的实例地址

例如

image-20230821002049417

启动cli服务

运行命令

 python cli_demo.py 

cli服务

使用示例:

image-20230821152713132

我是AI学习者和实践者荷逸,欢迎链接我交流AI相关知识:wx:heyi_master

相关文章:

【私有GPT】CHATGLM-6B部署教程

【私有GPT】CHATGLM-6B部署教程 CHATGLM-6B是什么? ChatGLM-6B是清华大学知识工程和数据挖掘小组(Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University)发布的一个开源的对话机器人。根据官方介绍,这是…...

基于“R语言+遥感“水环境综合评价方法教程

详情点击链接:基于"R语言遥感"水环境综合评价方法教程 一:R语言 1.1 R语言特点(R语言) 1.2 安装R(R语言) 1.3 安装RStudio(R语言) (1)下载地址…...

To_Heart—题解——P6234 [eJOI2019] T形覆盖

link. 突然很想写这篇题解。虽然题目不算难。 考场只有30分是为什么呢?看来是我没有完全理解这道题目吧! 首先很明显的转换是,把 T 型覆盖看成十字形,再考虑最后减去某一块的贡献。 然后然后直接往原图上面放十字形!对于每一个…...

[软件工具]精灵标注助手目标检测数据集格式转VOC或者yolo

有时候我们拿到一个数据集发现是xml文件格式如下&#xff1a; <?xml version"1.0" ?> <doc><path>C:\Users\Administrator\Desktop\test\000000000074.jpg</path><outputs><object><item><name>dog</name>…...

Spring BeanName自动生成原理

先看代码演示 项目先定义一个User类 public class User {private String name;Overridepublic String toString() {return "User{" "name" name \ };}public String getName() {return name;}public void setName(String name) {this.name name;} }…...

论文阅读_图形图像_U-NET

name_en: U-Net: Convolutional Networks for Biomedical Image Segmentation name_ch: U-Net&#xff1a;用于生物医学图像分割的卷积网络 addr: http://link.springer.com/10.1007/978-3-319-24574-4_28 doi: 10.1007/978-3-319-24574-4_28 date_read: 2023-02-08 date_publi…...

基于热交换算法优化的BP神经网络(预测应用) - 附代码

基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.热交换优化BP神经网络2.1 BP神经网络参数设置2.2 热交换算法应用 4.测试结果&#xff1a;5.Matlab代…...

基于秃鹰算法优化的BP神经网络(预测应用) - 附代码

基于秃鹰算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于秃鹰算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.秃鹰优化BP神经网络2.1 BP神经网络参数设置2.2 秃鹰算法应用 4.测试结果&#xff1a;5.Matlab代码 摘要…...

2.文章复现《热电联产系统在区域综合能源系统中的定容选址研究》(附matlab程序)

0.代码链接 1.简述 光热发电是大规模利用太阳能的新兴方式&#xff0c;其储热系 统能够调节光热电站的出力特性&#xff0c;进而缓解光热电站并网带来的火电机组调峰问题。合理配置光热电站储热容量&#xff0c;能够 有效降低火电机组调峰成本。该文提出一种光热电站储热容 量配…...

如何开启esxi主机的ssh远程连接

环境&#xff1a;esxi主机&#xff0c;说明&#xff1a;esxi主机默认ssh是不开启的&#xff0c;需要人工手动启动&#xff0c;也可以设置同esxi主机一起开机启动。 1、找到esxi主机&#xff0c;点击“配置”那里&#xff0c;再点击右边的属性&#xff0c;如图所示&#xff1a; …...

Android Studio实现解析HTML获取json,解析json图片URL,将URL存到list,进行瀑布流展示

目录 效果build.gradle&#xff08;app&#xff09;添加的依赖&#xff08;用不上的可以不加&#xff09;AndroidManifest.xml错误activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL 效果 build.gradle&#xff08;app&#xff09;添加的依赖&…...

Centos7 交叉编译QT5.9.9源码 AArch64架构

环境准备 centos7 镜像 下载地址&#xff1a;http://mirrors.aliyun.com/centos/7.9.2009/isos/x86_64/ aarch64交叉编译链 下载地址&#xff1a;https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/ QT5.9.9源代码 下载地址&#xff1…...

爬虫逆向实战(二十)--某99网站登录

一、数据接口分析 主页地址&#xff1a;某99网站 1、抓包 通过抓包可以发现登录接口是AC_userlogin 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”可以发现txtPassword和aws是加密参数 请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无…...

【C# 基础精讲】LINQ to Objects查询

LINQ to Objects是LINQ技术在C#中的一种应用&#xff0c;它专门用于对内存中的对象集合进行查询和操作。通过使用LINQ to Objects&#xff0c;您可以使用统一的语法来查询、过滤、排序、分组等操作各种.NET对象。本文将详细介绍LINQ to Objects的基本概念、常见的操作和示例&am…...

【力扣】209. 长度最小的子数组 <滑动窗口>

【力扣】209. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的连续子数组 [numsl, numsl1, …, numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0 。 示例 1&a…...

帮助中心应该用什么工具做?

在线帮助中心是指一个位于互联网上的资源平台&#xff0c;提供给用户获取产品或服务相关信息、解决问题以及获取技术支持的渠道。它通常包含了组织化的知识库、常见问题解答&#xff08;FAQ&#xff09;、操作指南、教程视频、用户手册等内容。在线帮助中心的主要目标是为用户提…...

前端面试:【跨域与安全】跨域问题及解决方案

嗨&#xff0c;亲爱的Web开发者&#xff01;在构建现代Web应用时&#xff0c;跨域问题和安全性一直是不可忽视的挑战之一。本文将深入探讨跨域问题的背景以及解决方案&#xff0c;以确保你的应用既安全又能与其他域名的资源进行互操作。 1. 什么是跨域问题&#xff1f; 跨域问…...

【SQL中DDL DML DQL DCL所包含的命令】

SQL中DDL DML DQL DCL所包含的命令 关于DDL、DML、DQL、DCL的定义和适用范围如下&#xff1a; 数据定义语言&#xff08;Data Definition Language&#xff0c;DDL&#xff09;&#xff1a; DDL用于创建、修改和删除数据库中的表、视图、索引等对象。它的主要命令包括CREATE、A…...

LeetCode150道面试经典题-- 二叉树的最大深度(简单)

1.题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 2.示例 3.思路 深度优先遍历 一个二叉树要查询到最大深度&#xff0c;可以将问题转为从根节点出发&#xff0c;查看左右子树的最大深度&am…...

【C++11】future和async等

C11的future和async等关键字 1.async和future的概念 std::async 和 std::future 是 C11 引入的标准库功能&#xff0c;用于实现异步编程&#xff0c;使得在多线程环境中更容易处理并行任务。它们可以帮助你在不同线程中执行函数&#xff0c;并且能够方便地获取函数的结果。 在…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...