当前位置: 首页 > news >正文

【GeoDa实用技巧100例】022:geoda生成空间权重矩阵(邻接矩阵、距离矩阵)

geoda生成空间权重矩阵(邻接矩阵、距离矩阵),车式矩阵、后式矩阵、K邻接矩阵。

文章目录

  • 一、概述
  • 二、“车式”邻接的gal文档生成
  • 三、“后式”邻接gal文档生成
  • 四、k最近邻居gat文档生成
  • 五、查看gal和gat文档

一、概述

空间权重矩阵(或相应的表格形式)一般需要用计算机软件生成。在GeoDa中,无法直接生成空间权重矩阵,只能生成它的表格形式,即邻接关系的gal文档和距离关系的gat文档,两者都可以用Notepad++打开(推荐使用)。下面我们用萨克拉门托(sacramentot)人口调查资料为例,说明用GeoDa生成“车式”邻接、“后式”邻接和k最近邻居空间权重矩阵的gal(或gwt)文档。

二、“车式”邻接的gal文档生成

在GeoDa中,建立空间权重gal文档的基本步骤如下:

打开底图(文档sacramentot2.shp,关键词POLYID):

在这里插入图片描述
点击【工具】→【空间权重管理】,打开空间权重管理对话框。

相关文章:

【GeoDa实用技巧100例】022:geoda生成空间权重矩阵(邻接矩阵、距离矩阵)

geoda生成空间权重矩阵(邻接矩阵、距离矩阵),车式矩阵、后式矩阵、K邻接矩阵。 文章目录 一、概述二、“车式”邻接的gal文档生成三、“后式”邻接gal文档生成四、k最近邻居gat文档生成五、查看gal和gat文档一、概述 空间权重矩阵(或相应的表格形式)一般需要用计算机软件生…...

基于web的鲜花商城系统java jsp网上购物超市mysql源代码

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 基于web的鲜花商城系统 系统有2权限:前台…...

意外发现Cortex-M内核带的64bit时间戳,比32bit的DWT时钟周期计数器更方便,再也不用担心溢出问题了

视频: https://www.bilibili.com/video/BV1Bw411D7F5 意外发现Cortex-M内核带的64bit时间戳,比32bit的DWT时钟周期计数器更方便,再也不用担心溢出问题了 介绍: 看参数手册的Debug章节,System ROM Table里面带Timestam…...

数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。

文章目录 前言一、单源最短路径1、单源最短路径问题2、Dijkstra 初始化a、参数b、初始化参数c、算法步骤 3、Dijkstra 算法详细步骤a、第一轮算法执行b、第二轮算法执行c、第三轮算法执行d、第四轮算法执行e、第五轮算法执行f、第六轮算法执行 4、java算法实现 二、多源最短路径…...

改进YOLO系列:6.添加ECA注意力机制

添加ECA注意力机制 1. ECA注意力机制论文2. ECA注意力机制原理3. ECA注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. ECA注意力机制论文 论文题目:ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks 论文链接:ECA-N…...

软件测试知识点总结(一)

文章目录 前言一. 什么是软件测试二. 软件测试和软件调试的区别三. 软件测试和研发的区别四. 优秀的测试人员所应该具备的素质总结 前言 在现实生活中的很多场景下,我们都会进行测试。 比如买件衣服,我们需要看衣服是不是穿着好看,衣服材质如…...

持续集成与持续交付:现代软件测试的变革之路

引言 在数字化时代,软件开发的速度和复杂性都在不断增加。为了满足市场的需求,企业需要更快、更高效地交付高质量的软件产品。在这样的背景下,持续集成与持续交付(CI/CD)成为了软件开发和测试的核心实践。 软件开发的…...

深度学习基本理论下篇:(梯度下降/卷积/池化/归一化/AlexNet/归一化/Dropout/卷积核)、深度学习面试

深度学习基本理论上篇:(MLP/激活函数/softmax/损失函数/梯度/梯度下降/学习率/反向传播) 深度学习基本理论上篇:(MLP/激活函数/softmax/损失函数/梯度/梯度下降/学习率/反向传播)、深度学习面试_会害羞的杨…...

[Ubuntu 20.04] 通过udev规则修改网卡名称(例如eth0)

在 Ubuntu 20.04 操作系统中,默认情况下,网卡接口名称采用了一种较为复杂的命名方式(如 enp0s3、eth0 等)。然而,有时候我们可能更希望使用更简洁和易于识别的名称来标识不同的网络接口。那么如何在 Ubuntu 20.04 中修改网卡接口的名称,以满足个性化需求。 步骤一:查看当…...

Java“牵手”根据关键词搜索(分类搜索)lazada商品列表页面数据获取方法,lazadaAPI实现批量商品数据抓取示例

lazada商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取lazada商品列表和商品详情页面数据,您可以通过开放平台的接口或者直接访问lazada商城的网页来获取商品详情信息。以下是两种常用方法的介…...

Java—实现多线程程序 | 入门

目录 一、前言 二、基本概念 进程 线程 三、Java多线程实现 java.lang.Thread类 获取线程名字及对象 获取main进程名 Thread currentThread() 四、线程优先级 设置优先级 一、前言 前期入门学习的代码中,全部都是单线的程序,也就是从头到尾…...

8.5 【C语言】指向函数的指针

8.5.1 什么是函数的指针 每次调用函数时都从该地址入口开始执行此段函数代码。函数名代表函数的起始地址。 8.5.2 用函数指针变量调用函数 例8.22 用函数求整数a和b中的大者 解题思路:在主函数调用max函数,除了可以通过函数名调用外,还可…...

C++实现字符串的逆置

目录 C和C的区别 【1】C对C的扩充 【2】C对C的兼容 第一个C程序 【1】hello world 【2】cout标准输出流对象 i)介绍 ii)运算 iii)cout的使用 iv)使用cout指定格式的输出 练习:1、输出斐波那契的前10项。 【3】…...

论Spring或Spring Boot的花式扩展

文章目录 引言扩展点讲述花式扩展之自动配置类花式扩展之实现接口实现方式样例 花式扩展之自定义starterImport方式SpringFactories方式 总结鸣谢 引言 Spring Boot是一个高度可定制的框架,旨在帮助开发者快速创建、配置和管理他们的应用程序 扩展点讲述 Spring Bo…...

如何评估分类模型的好坏

如何评估分类模型的好坏 评估分类预测模型的质量,常用一个矩阵、三条曲线和六个指标。 一个矩阵:混淆矩阵;三条曲线:ROC曲线、PR曲线、KS曲线;六个指标:正确率Acc、查全率R、查准率P、F值、AUC、BEP值、KS…...

● 84.柱状图中最大的矩形

84.柱状图中最大的矩形 class Solution { public:int largestRectangleArea(vector<int>& heights) {stack<int>st;heights.insert(heights.begin(),0);heights.push_back(0);st.push(0);int res0;for(int i1;i<heights.size();i){while(heights[i]<heig…...

未检查的转换: ‘java.lang.Object‘ 转换为 ‘java.util.List

fastjson方式 Object object ... // 获取待转换的objectList<WbsCategory> list JSON.parseObject(JSON.toJSONString(object), new TypeReference<List<WbsCategory>>() {}); 在这个示例中&#xff0c;我们使用JSON.toJSONString()将object对象转换…...

【C语言】使用C语言,实现九九乘法表(另附Python、Java、JavaScript实现方式)

文章目录 1. C语言实现1.1 思路1.2 代码实现 3.其他语言实现3.1 Python实现3.2 Java实现3.3 JavaScript实现 1. C语言实现 1.1 思路 九九乘法表图示&#xff1a; 思路如下&#xff1a;定义两层for循环即可实现九九乘法表 一共有9层&#xff0c;所以要定义一个变量i&#xff…...

[机缘参悟-102] :IT人 - 管理的本质?管理人与从事技术的本质区别?人性、冰山模型、需求层次模型

感悟&#xff1a; 管理的本质是&#xff1a;学习各种管理理论、方法、技能&#xff0c;克服自身的人性缺点、预防他人人性的恶点、利用他人的人性特点拿到结果&#xff0c;从而完成组织、管理者的上司、管理者自身、管理者下属的目标。管理中的问题&#xff0c;80%以上都人性问…...

[论文阅读笔记26]Tracking Everything Everywhere All at Once

论文地址: 论文 代码地址: 代码 这是一篇效果极好的像素级跟踪的文章, 发表在ICCV2023, 可以非常好的应对遮挡等情形, 其根本的方法在于将2D点投影到一个伪3D(quasi-3D)空间, 然后再映射回去, 就可以在其他帧中得到稳定跟踪. 这篇文章的方法不是很好理解, 代码也刚开源, 做一…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...