当前位置: 首页 > news >正文

cuda编程day001

一、环境:

①、linux   cuda-11.3  opecv4.8.0

不知道头文件和库文件路径,用命令查找:

# find /usr/local -name cuda.h 2>/dev/null   # 查询cuda头文件路径
/usr/local/cuda-11.3/targets/x86_64-linux/include/cuda.h
# find /usr/local -name libcudart.so 2>/dev/null  # 查询库文件路径
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudart.so
# pkg-config --cflags opencv4  # 查看opencv头文件
-I/usr/include/opencv4/opencv -I/usr/include/opencv4
# pkg-config --libs opencv4  查看opencv 库文件
-lopencv_stitching -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired 
-lopencv_ccalib -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm 
-lopencv_highgui -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf 
-lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_quality 
-lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_shape -lopencv_stereo 
-lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres 
-lopencv_optflow -lopencv_surface_matching -lopencv_tracking -lopencv_datasets 
-lopencv_text -lopencv_dnn -lopencv_plot -lopencv_ml -lopencv_videostab 
-lopencv_videoio -lopencv_viz -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d 
-lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_imgproc -lopencv_core

添加到makefile文件里面:

# 这里定义头文件库文件和链接目标没有加-I -L -l,后面用foreach一次性增加
include_paths := /usr/local/cuda-11.3/targets/x86_64-linux/include /usr/include/opencv4 /usr/include/opencv4/opencv
library_paths := /usr/local/cuda-11.3/targets/x86_64-linux/lib
link_librarys := cudart opencv_core opencv_imgcodecs opencv_imgproc $(shell pkg-config --libs opencv4 | sed 's/-l//g')

因为OpenCV的库文件太多,使用shell函数将pkg-config命令的结果作为一个命令执行,并将其分割为单独的库名称,使用了sed命令来移除pkg-config命令返回的库名称中的横线-。这样,link_librarys中的库名称和pkg-config命令返回的库名称都将不带横线。这样就可以正确链接opencv4.8.0中的库了。

二、GPU的大致了解

原文:Bringing HPC Techniques to Deep Learning - Andrew Gibiansky

1、DataParallel模式(DP),Parameter Center模式,主从模式(主卡收集梯度,从卡发送参数和接受结果)

速度受限于主卡到从卡的带宽和速度。我们定义:

D = 模型参数总量,设为1GB
S = 单条线路的传输速率,设为1GB/s,也就是任何显卡传数据到GPU0,或者传输出去都是最大1GB/s
N = 显卡的个数,这里为5

则有:

①. 数据的传输量为4 x D x 2,我们经过了1次Scatter Reduce传输了4D数据量,经过了1次Allgather传输了4D数据量
②. 我们传输耗时理论为4 x 2 x D / S,得到结果约为8秒,公式为:Times = 2(N-1) * D / S
③. 我们传输的数据总量(显卡数相关):Data Transferred = 2(N-1) * D

2、DistributedDataParallel模式(DDP),Ring模式,环形模式

传输速度只与单个显卡的速度和带宽。我们定义:

D = 模型参数总量,设为1GB
S = 单条线路的传输速率,设为1GB/s,也就是任何显卡传数据到GPU0,或者传输出去都是最大1GB/s
N = 显卡的个数,这里为5

①、Scatter-Reduce(循环N-1次):
        每个卡都传递其显卡索引对应的那份数据,给相邻的下一个显卡做累加,递所使用的线路是相邻显卡路径,不存在等待堆积,执行一次耗时: 1/N 

②、Allgather(循环N-1次):

        将每个卡中存在的完整数据发送给相邻下一个卡,执行一次耗时:1/N

则:

  1. 我们Scatter-Reduce时经过了N-1次1/N大小的数据传输,耗时认为是𝐷/𝑆 * 1/𝑁 * (𝑁−1)
  2. 我们Allgather时经过了N-1次1/𝑁大小的数据传输,耗时认为是𝐷/𝑆 * 1/𝑁 * (𝑁−1)
  3. 因此传输的耗时为:𝑇𝑖𝑚𝑒𝑠=2(𝑁−1) * 1/𝑁 * 𝐷/𝑆
  4. 传输的数据量为:𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑=2(𝑁−1) * 𝐷 / 𝑁

可见:传输的数据量与显卡数量无关了 只与对应的显卡之间的数据传输速度有关

总结:

  1. DP模式下的主从模式,通信速度受限于单个显卡的通信速率。传递的数据量为2(𝑁−1)𝐷
    • N为显卡数,D为模型参数大小
  2. DDP模式下的RingAllReduce,通信速度受限于显卡邻居间通信速率
    • 于PCIE下,受限于主板的PCIE速度,而不是显卡的速度
    • 于NVLINK下则最高可达100GB/s甚至更高
    • 传递的数据量为2(𝑁−1)*𝐷/𝑁,与显卡数量无关,也因此其效率高

相关文章:

cuda编程day001

一、环境: ①、linux cuda-11.3 opecv4.8.0 不知道头文件和库文件路径,用命令查找: # find /usr/local -name cuda.h 2>/dev/null # 查询cuda头文件路径 /usr/local/cuda-11.3/targets/x86_64-linux/include/cuda.h # find /usr/…...

Java 中使用 ES 高级客户端库 RestHighLevelClient 清理百万级规模历史数据

🎉工作中遇到这样一个需求场景:由于ES数据库中历史数据过多,占用太多的磁盘空间,需要定期地进行清理,在一定程度上可以释放磁盘空间,减轻磁盘空间压力。 🎈在经过调研之后发现,某服务…...

C++最易读手撸神经网络两隐藏层(任意Nodes每层)梯度下降230821a

// c神经网络手撸20梯度下降22_230820a.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 #include<iostream> #include<vector> #include<iomanip> // setprecision #include<sstream> // getline stof() #include<fstream…...

Leetcode 2235.两整数相加

一、两整数相加 给你两个整数 num1 和 num2&#xff0c;返回这两个整数的和。 示例 1&#xff1a; 输入&#xff1a;num1 12, num2 5 输出&#xff1a;17 解释&#xff1a;num1 是 12&#xff0c;num2 是 5 &#xff0c;它们的和是 12 5 17 &#xff0c;因此返回 17 。示例…...

Postman —— postman实现参数化

什么时候会用到参数化 比如&#xff1a;一个模块要用多组不同数据进行测试 验证业务的正确性 Login模块&#xff1a;正确的用户名&#xff0c;密码 成功&#xff1b;错误的用户名&#xff0c;正确的密码 失败 postman实现参数化 在实际的接口测试中&#xff0c;部分参数每…...

LeetCode--HOT100题(41)

目录 题目描述&#xff1a;102. 二叉树的层序遍历&#xff08;中等&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;102. 二叉树的层序遍历&#xff08;中等&#xff09; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&am…...

微信小程序教学系列(6)

第六章&#xff1a;小程序商业化 第一节&#xff1a;小程序的商业模式 在这一节中&#xff0c;我们将探讨微信小程序的商业模式&#xff0c;让你了解如何将你的小程序变成一个赚钱的机器&#xff01; 1. 广告收入 小程序的商业模式之一是通过广告收入赚钱。你可以在小程序中…...

小程序中的全局配置以及常用的配置项(window,tabBar)

全局配置文件和常用的配置项 app.json: pages:是一个数组&#xff0c;用于记录当前小程序所有页面的存放路径&#xff0c;可以通过它来创建页面 window:全局设置小程序窗口的外观(导航栏&#xff0c;背景&#xff0c;页面的主体) tabBar:设置小程序底部的 tabBar效果 style:是否…...

数据工厂调研及结果展示

数据工厂 一、背景 在开发自测、测试迭代测试、产品验收的过程中&#xff0c;都需要各种各样的前置数据&#xff0c;大致分为如下几类&#xff1a; 账号&#xff08;实名、权益等级、注册等&#xff09; 货源&#xff08;优货、急走、相似、一手、普通货源等&#xff09; …...

抓包相关,抓包学习

检查网络流量 - 提琴手经典 (telerik.com) Headers Reference - Fiddler Classic (telerik.com) 以上是fiddler官方文档 F12要勾选保留日志 不勾选的话跳转到新页面之前页面的日志不会在下方显示 会保留所有抓到的包 如果重定向到别的页面 F12抓包可能看不到响应信息,但是…...

云原生之使用Docker部署SSCMS内容管理系统

云原生之使用Docker部署SSCMS内容管理系统 一、SSCMS介绍二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载SSCMS镜像五、部署SSCMS内容管理系统5.1 创建SSCMS容器5.2 检查SSC…...

uniapp -- 在组件中拿到pages.json下pages设置navigationBarTitleText这个值?

1:在 pages.json 文件中设置 navigationBarTitleText,例如: {"pages": [{"path": "pages/home/index","style": {"navigationBarTitleText": "首页",&...

Java获取环境变量和运行时环境信息和自定义配置信息

System.getenv() 获取系统环境变量 public static void main1() {Map<String, String> envMap System.getenv();envMap.entrySet().forEach(x-> System.out.println(x.getKey() "" x.getValue())); } System.getenv() 获取的是操作系统环境变量列表&…...

React入门 组件学习笔记

项目页面以组件形式层层搭起来&#xff0c;组件提高复用性&#xff0c;可维护性 目录 一、函数组件 二、类组件 三、 组件的事件绑定 四、获取事件对象 五、事件绑定传递额外参数 六、组件状态 初始化状态 读取状态 修改状态 七、组件-状态修改counter案例 八、this问…...

Windows商店引入SUSE Linux Enterprise Server和openSUSE Leap

在上个月的Build 2017开发者大会上&#xff0c;微软宣布将SUSE&#xff0c;Ubuntu和Fedora引入Windows 商店&#xff0c;反应出微软对开放源码社区的更多承诺。 该公司去年以铂金会员身份加入Linux基金会。现在&#xff0c;微软针对内测者的Windows商店已经开始提供 部分Linux发…...

[NLP]深入理解 Megatron-LM

一. 导读 NVIDIA Megatron-LM 是一个基于 PyTorch 的分布式训练框架&#xff0c;用来训练基于Transformer的大型语言模型。Megatron-LM 综合应用了数据并行&#xff08;Data Parallelism&#xff09;&#xff0c;张量并行&#xff08;Tensor Parallelism&#xff09;和流水线并…...

软考高级系统架构设计师系列论文七十八:论软件产品线技术

软考高级系统架构设计师系列论文七十八:论软件产品线技术 一、摘要二、正文三、总结一、摘要 本人作为某软件公司负责人之一,通过对位于几个省的国家甲级、乙级、丙级设计院的考查和了解,我决定采用软件产品线方式开发系列《设计院信息管理平台》产品。该产品线开发主要有如…...

yolov5中添加ShuffleAttention注意力机制

ShuffleAttention注意力机制简介 关于ShuffleAttention注意力机制的原理这里不再详细解释.论文参考如下链接here   yolov5中添加注意力机制 注意力机制分为接收通道数和不接受通道数两种。这次属于接受通道数注意力机制,这种注意力机制由于有通道数要求,所示我们添加的时候…...

Effective C++条款17——以独立语句将newed 对象置入智能指针(资源管理)

假设我们有个函数用来揭示处理程序的优先权&#xff0c;另一个函数用来在某动态分配所得的widget上进行某些带有优先权的处理: void priority(); void processWidget(std::tr1::shared_ptr<Widget>pw, int priority);由于谨记“以对象管理资源”&#xff08;条款13&…...

奇迹MU服务器如何选择配置?奇迹MU服务器租用

不同的服务器&#xff0c;根据其特点与性能适用于不同的应用场景&#xff0c;为了让你们更好的理解&#xff0c;我们对服务器进行了分类归纳&#xff0c;结合了服务器不同的特点以及价位进行一个区分&#xff0c;帮助我们更好的选择合适的服务器配置。 VPS服务器 VPS服务器又…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...