当前位置: 首页 > news >正文

《机器学习在车险定价中的应用》实验报告

 

目录

一、实验题目

        机器学习在车险定价中的应用

二、实验设置

1. 操作系统:

2. IDE:

3. python:

4. 库:

三、实验内容

实验前的猜想:

四、实验结果

1. 数据预处理及数据划分

独热编码处理结果(以地区为例)

2. 模型训练

3. 绘制初始决策树

4. 模型评价

5. 模型优化

绘制优化后的决策树

6. 修改样本、网格搜索参数进一步优化模型

五、实验分析


 

 

一、实验题目

        机器学习在车险定价中的应用

二、实验设置

1. 操作系统:

        Windows 11 Home

2. IDE:

        PyCharm 2022.3.1 (Professional Edition)

3. python

        3.8.0

4. 库:

numpy

1.20.0

 

matplotlib

3.7.1

 

pandas

1.1.5

 

scikit-learn

0.24.2

 

 

conda create -n ML python==3.8 pandas scikit-learn numpy matplotlib

三、实验内容

        本次实验使用决策树模型进行建模,实现对车险 数据的分析,车险数据为如下MTPLdata.csv数据集:

f2dccf851f8245909e63b5e927fd0e01.png

        该车险数据集包含了50万个样本,每个样本有8个特征和1个标签。其中,标签是一个二元变量,值为0或1,表示车主是否报告过车险索赔(clm,int64);特征包括车主的年龄(age,int64),车辆的年限(ac,int64)、功率(power,int64)、燃料类型(gas,object)、品牌(brand,object),车主所在地区(area,object)、居住地车辆密度(dens,int64)、以及汽车牌照类型(ct,object)。

实验前的猜想

        详见实验报告

四、实验结果

1. 数据预处理及数据划分

        将数据读入并进行数据预处理,包括哑变量处理和划分训练集和测试集

MTPLdata = pd.read_csv('MTPLdata.csv')
# 哑变量处理-独热编码
# 将clm列的数据类型转换为字符串
MTPLdata['clm'] = MTPLdata['clm'].map(str)
# 选择包括第1、2、3、4、5、6、7、8列的数据作为特征输入
# ac、brand、age、gas、power
X_raw = MTPLdata.iloc[:, [0, 1, 2, 3, 4]]
# X_raw = MTPLdata.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7]]
# 对X进行独热编码
X = pd.get_dummies(X_raw)
# 选择第9列作为标签y
y = MTPLdata.iloc[:, 8]# 将数据划分为训练集和测试集,测试集占总数据的20%
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2, random_state=1)

 

独热编码处理结果(以地区为例)

bca076c069c04a629d08ec60ca4b6d9d.png

2. 模型训练

        我们使用决策树分类器模型进行训练(设定树的最大深度为2,使用平衡的类权重,并默认使用基尼系数检验准确度)。

model = DecisionTreeClassifier(max_depth=2, class_weight='balanced', random_state=123)
model.fit(X_train, y_train)     # 数据拟合
model.score(X_test, y_test)     # 在测试集上评估模型

3. 绘制初始决策树

        为了更好地解读决策树模型,调用plot_tree函数绘制决策树。

plt.figure(figsize=(11, 11))
plot_tree(model, feature_names=X.columns, node_ids=True, rounded=True, precision=2)
plt.show()

e3ef80d6c242491193ea5a23b4866f78.png

 

4. 模型评价

pred = model.predict(X_test)
table = pd.crosstab(y_test, pred, rownames=['Actual'], colnames=['Predicted'])
# table# 计算模型的准确率、错误率、召回率、特异度和查准率
table = np.array(table)  # 将pandas DataFrame转换为numpy array
Accuracy = (table[0, 0] + table[1, 1]) / np.sum(table)      # 准确率
Error_rate = 1 - Accuracy  # 错误率
Sensitivity = table[1, 1] / (table[1, 0] + table[1, 1])     # 召回率
Specificity = table[0, 0] / (table[0, 0] + table[0, 1])     # 特异度
Recall = table[1, 1] / (table[0, 1] + table[1, 1])          # 查准率

5. 模型优化

        为了寻找更优的模型,我们使用cost_complexity_pruning_path函数计算不同的ccp_alpha对应的决策树的叶子节点总不纯度,并绘制ccp_alpha与总不纯度之间的关系图。

model = DecisionTreeClassifier(class_weight='balanced', random_state=123)
path = model.cost_complexity_pruning_path(X_train, y_train)
plt.plot(path.ccp_alphas, path.impurities, marker='o', drawstyle='steps-post')
plt.xlabel('alpha (cost-complexity parameter)')
plt.ylabel('Total Leaf Impurities')
plt.title('Total Leaf Impurities vs alpha for Training Set')
plt.show()

                                        1w样本                                                             50w样本

74fe13bc704a4a1c9f27b316cd7fd8c6.png

         接着,我们通过交叉验证选择最优的ccp_alpha,并使用最优的ccp_alpha重新训练模型。

 

绘制优化后的决策树

rangeccpalpha = np.linspace(0.000001, 0.0001, 10, endpoint=True)
param_grid = {'max_depth':  np.arange(3, 7, 1),# 'ccp_alpha': rangeccpalpha,'min_samples_leaf': np.arange(1, 5, 1)
}
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=1)
model = GridSearchCV(DecisionTreeClassifier(class_weight='balanced', random_state=123),param_grid, cv=kfold)
model.fit(X_train, y_train)

8a1af918529548a9b3d2294700c4d59d.png

 

此外,还计算了各个特征的重要性,并绘制了特征重要性图。

plt.figure(figsize=(20, 20))
sorted_index = model.feature_importances_.argsort()
plt.barh(range(X_train.shape[1]), model.feature_importances_[sorted_index])
plt.yticks(np.arange(X_train.shape[1]), X_train.columns[sorted_index])
plt.xlabel('Feature Importance')
plt.ylabel('Feature')
plt.title('Decision Tree')
plt.tight_layout()
plt.show()

d24a68bc5d2242bd9b054d558b1c8567.png

6. 修改样本、网格搜索参数进一步优化模型

 

   详见实验报告

 

五、实验分析

        请下载本实验对应的代码及实验报告资源(其中实验分析部分共2页、1162字)

      

 

相关文章:

《机器学习在车险定价中的应用》实验报告

目录 一、实验题目 机器学习在车险定价中的应用 二、实验设置 1. 操作系统: 2. IDE: 3. python: 4. 库: 三、实验内容 实验前的猜想: 四、实验结果 1. 数据预处理及数据划分 独热编码处理结果(以…...

14. Docker中实现CI和CD

目录 1、前言 2、什么是CI/CD 3、部署Jenkins 3.1、下载Jenkins 3.2、启动Jenkins 3.3、访问Jenkins页面 4、Jenkins部署一个应用 5、Jenkins实现Docker应用的持续集成和部署 5.1、创建Dockerfile 5.2、集成Jenkins和Docker 6、小结 1、前言 持续集成(CI/CD)是一种…...

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容 喝汽水问题 喝汽水,1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水(编程实现)。 题目分析 数学思路分析 根据给出的问题和引用内容,我们可以得出答案。 首先&#xff…...

P1591 阶乘数码(Java高精度)

题目描述 求 n ! n! n! 中某个数码出现的次数。 输入格式 第一行为 t ( t ≤ 10 ) t(t \leq 10) t(t≤10),表示数据组数。接下来 t t t 行,每行一个正整数 n ( n ≤ 1000 ) n(n \leq 1000) n(n≤1000) 和数码 a a a。 输出格式 对于每组数据&a…...

Mybatis的动态SQL及关键属性和标识的区别(对SQL更灵活的使用)

( 虽然文章中有大多文本内容,想了解更深需要耐心看完,必定大有受益 ) 目录 一、动态SQL ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 优点 ( 4 ) 特殊标签 ( 5 ) 演示 二、#和$的区别 2.1 #使用 ( 1 ) #占位符语法 ( 2 ) #优点 2.…...

mysql下载

网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可...

聚合函数与窗口函数

聚合函数 回答一 聚合函数(Aggregate Functions)是SQL中的函数,用于对一组数据进行计算,并返回单个结果。聚合函数通常用于统计和汇总数据,包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…...

c语言实现堆

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…...

ubuntu 如何将文件打包成tar.gz

要将文件打包成.tar.gz文件,可以使用以下命令: tar -czvf 文件名.tar.gz 文件路径 其中,-c表示创建新的归档文件,-z表示使用gzip进行压缩,-v表示显示详细的打包过程,-f表示指定归档文件的名称。 例如&am…...

前端优化页面加载速度的方法(持续更新)

提速方法方向 延迟脚本加载 使用 async 属性: 在这种方法中,脚本将在下载完成后立即执行,而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本,例如分析脚本等。示例如下: html …...

利用SSL证书的SNI特性建立自己的爬虫ip服务器

今天我要和大家分享一个关于自建多域名HTTPS爬虫ip服务器的知识,让你的爬虫ip服务器更加强大!无论是用于数据抓取、反爬虫还是网络调试,自建一个支持多个域名的HTTPS爬虫ip服务器都是非常有价值的。本文将详细介绍如何利用SSL证书的SNI&#…...

HTML和CSS

HTML HTML(Hyper Text Markup Language):超文本语言 超文本:超越了文本的限制,比普通文本更强大。除了文字信息,还可以定义图片、音频、视频等内容。 标记语言:由标签构成的语言 HTML标签都是预定义好的。例如:使用&l…...

C#的IndexOf

在 C# 中,IndexOf 是一个字符串、数组或列表的方法,用于查找指定元素的第一个匹配项的索引。它返回一个整数值,表示匹配项在集合中的位置,如果未找到匹配项,则返回 -1。 IndexOf 方法有多个重载形式,可以根…...

深度学习2.神经网络、机器学习、人工智能

目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…...

利用LLM模型微调的短课程;钉钉宣布开放智能化底座能力

🦉 AI新闻 🚀 钉钉宣布开放智能化底座能力AI PaaS,推动企业数智化转型发展 摘要:钉钉在生态大会上宣布开放智能化底座能力AI PaaS,与生态伙伴探寻企业服务的新发展道路。AI PaaS结合5G、云计算和人工智能技术的普及和…...

软件工程(七) UML之用例图详解

1、UML-4+1视图 UML-4+1视图将会与后面的架构4+1视图会一一对应上 视图往往出现在什么场景:我们看待一个事物,我们觉得它很复杂,难以搞清楚,为了化繁为简,我们会从一个侧面去看,这就是视图。而4+1视图就是分不同角度去看事物。 逻辑视图(logical view) 一般使用类与对…...

pd.cut()函数--Pandas

1. 函数功能 将连续性数值进行离散化处理:如对年龄、消费金额等进行分组 2. 函数语法 pandas.cut(x, bins, rightTrue, labelsNone, retbinsFalse, precision3, include_lowestFalse, duplicatesraise, orderedTrue)3. 函数参数 参数含义x要离散分箱操作的数组&…...

DataBinding的基本使用

目录 一、MVC、MVP和MVVM框架的使用场景二、Java使用 一、MVC、MVP和MVVM框架的使用场景 MVC: 适用于小型项目,够灵活, 缺点:Activity不仅要做View的事情还要做控制和模型的处理,导致Activity太过臃肿,管理…...

eslint和prettier格式化冲突

下载插件 ESLint 和 Prettier ESLint 进入setting.json中 setting.json中配置 {"editor.tabSize": 2,"editor.linkedEditing": true,"security.workspace.trust.untrustedFiles": "open","git.autofetch": true,"…...

matlab使用教程(26)—常微分方程的求解

1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题,ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…...

尚硅谷宋红康MySQL笔记 14-18

是记录,不会太详细,受本人知识限制会有错误,会有个人的理解在里面 第14章 视图 了解一下,数据库的常见对象 对象描述表(TABLE)表是存储数据的逻辑单元,以行和列的形式存在,列就是字段,行就是记…...

香港全新的虚拟资产服务商发牌制度

香港证监会2023年2月20日通告,原有虛擬資產交易平台如要符合資格參與當作為獲發牌的安排,必須在2023 年6 月1 日至2024 年2 月29 日期間(即由2023 年6 月1 日37起計九個月內)內,根據《打擊洗錢條例》下的虛擬資產服務提供者制度在網上提交完全…...

C# 泛型

目录 一、前言 二、相关内容 1、什么是泛型? 2、泛型类 3、泛型方法 4、限定类型参数 4.1、 类型参数的基本约束 4.2、接口约束 4.3、基类约束 4.5、泛型参数与限定类型参数的关系 4.6、自定义约束 5、使用泛型的好处 5.1、代码复用性 5.2、类型安全…...

servlet,Filter,责任的设计模式,静态代理

servlet servlet是前端和数据库交互的一个桥梁 静态网页资源的技术:在前端整个运行的过程中 我们的网页代码不发生改变的这种情况就称为静态的网页资源技术动态网页资源的技术:在前端运行的过程中 我们的前端页面代码会发生改变的这种情况就称为 动态的网…...

C++中的运算符总结(5):按位运算符(上)

C中的运算符总结(5):按位运算符(上) 9、按位运算符 NOT( ~)、 AND( &)、 OR( |)和 XOR( ^) 逻辑运算符和…...

8.Oracle中多表连接查询方式

表连接分类: 内连接、外连接、交叉连接、自连接 1 内连接 内连接是一种常见的多表关联查询方式,一般使用关键字INNER JOIN来实现。其中,INNER关键字可以省略,当只使用JOIN关键字时,语句只表示内连接操作。在使用内连…...

Linux 安装mysql(ARM架构)

添加mysql用户组和mysql用户 安装依赖libaio yum install -y libaio* 下载Mysql wget https://obs.cn-north-4.myhuaweicloud.com/obs-mirror-ftp4/database/mysql-5.7.27-aarch64.tar.gz安装mysql 解压Mysql tar xvf mysql-5.7.27-aarch64.tar.gz -C /usr/local/ 重命名 …...

git:git clone报错提示permissions xxxx for xxxxxx are too open

问题: 如题 参考: [密钥权限过大错误]ssh “permissions are too open” error 解决办法: 将id_rsa和id_rsa.pub的权限改为600...

elasticSearch数据的导入和导出

http://wget https://nodejs.org/dist/v10.13.0/node-v10.13.0-linux-x64.tar.gz 解压即可: 1、将索引中的数据导出到本地 myindex 是我的索引 elasticdump --inputhttp://localhost:9200/myindex--output/home/date/myindex.json2、将本地数据导入es中 elasticdum…...

DDR PHY

1.ddr phy架构 1.pub(phy unility block) 支持特性: (1)不支持SDRAM的DLL off mode (2)数据位宽是以8bit逐渐递增的(这样做的目的是因为可能支持16/32/64bit的总线位宽&#xff…...

哪些b2b网站做游戏机比较好/seo高级优化方法

1、首先他们底层数据结构不一样,ArrayList底层结构是数组,LinkedList底层结构是链表; 2、数据结构决定了,ArrayList在查询上的效率较高,而LinkedList在删除和添加上的效率更高;(需要注意的一点是…...

上海网站建设框架图/业务多平台怎么样

在windows的cmd命令行下,使用Python的PIL库打开并显示一个jpg图片: ?123openedImg Image.open(saveToFile);print "openedImg",openedImg;openedImg.show();结果是,图片被windows的图片查看器打开,却打开的是bmp图片&…...

许昌抖音推广公司/嘉兴seo外包

***利用了Facebook平台上的一个漏洞,令将近5000万个Facebook账户的访问令牌面临被窃取的风险。访问令牌是一种数字密钥,能让用户在每次使用Facebook时都不用重新输入密码。Facebook工程师周二发现了漏洞,它存在于Facebook的View As功能中&…...

做网站需要啥备案之类的嘛/网站品牌推广策略

prn是什么文件?使用打印机打印文件时,如果你在打印设置界面中选择“输出到文件”,那么随后输出到指定目录的文件默认是以.prn为扩展名,这个文件就是所谓的“prn文件”。prn文件虽然扩展名都是.prn,但对于不同品牌的打印机&#x…...

临沂网站建设哪家更好/自己想做个网站怎么做

在Java中经常会涉及到对象数组的排序问题,那么就涉及到对象之间的比较问题。本文为大家介绍java比较器的使用。java比较器的使用对于一个实现了Comparable接口的对象,该接口只能实现一次。如果在一个集合里面需要使用id排序,而在另外一个集合…...

wordpress仿虎嗅/关键词seo优化

传输层(TCP/IP、UDP):向用户提供可靠的端到端(End-to-End)服务传输层向高层屏蔽了下层数据通信的细节应用层(HTTP):为应用软件提供很多服务构建于TCP协议之上屏蔽网络传输相关细节HTTP三次握手&…...