多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比
多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比
目录
- 多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果



基本介绍
多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比
模型描述
Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比(完整程序和数据)
1.输入多个特征,输出单个变量;
2.考虑历史特征的影响,多变量时间序列预测;
4.csv数据,方便替换;
5.运行环境Matlab2020b及以上;
6.输出误差对比图。
程序设计
- 完整程序和数据获取方式1:同等价值程序兑换;
- 完整程序和数据获取方式2:私信博主回复Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比获取
- 完整程序和数据获取方式3(直接下载):Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比。
(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop2')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output') ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0mydevice = 'gpu';
elsemydevice = 'cpu';
endoptions = trainingOptions('adam', ...'MaxEpochs',MaxEpochs, ...'MiniBatchSize',MiniBatchSize, ...'GradientThreshold',1, ...'InitialLearnRate',learningrate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',56, ...'LearnRateDropFactor',0.25, ...'L2Regularization',1e-3,...'GradientDecayFactor',0.95,...'Verbose',false, ...'Shuffle',"every-epoch",...'ExecutionEnvironment',mydevice,...'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501
相关文章:
多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比
多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比 目录 多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比 模型描述 M…...
测试用例编写规范参考
章节目录: 一、规范目的二、模块划分三、颗粒度规范四、编写规范五、具体分项5.1 用例标题5.2 前置条件5.3 操作步骤5.4 预期结果 六、用例维护七、结束语 一、规范目的 规范合理,可执行性。一定要保证高可读性。 二、模块划分 同级别、同等级功能点。…...
unity3d:功能验证,收集开源项目的工程合集
unity3d功能验证,和收集开源项目的工程合集 目录持续更新地址 【腾讯文档】UnityForTest目录 https://docs.qq.com/doc/DWm9HSkVhTGdyUUVo 源码 https://github.com/luoyikun/UnityForTest 动画 创建骨骼动画 BoneAnimation场景 代码创建Mesh,骨骼…...
plotly_beforehover 用法:
在Plotly.js中,plotly_beforehover是在鼠标悬停在数据点上之前触发的回调事件。它的主要作用是在鼠标悬停事件发生前做一些准备工作。 plotly_beforehover事件是与图表对象绑定的,可以通过调用on方法来绑定事件处理程序。下面是一个示例代码:…...
利用 AI 赋能云安全,亚马逊云科技的安全技术创新服务不断赋能开发者
文章分享自亚马逊云科技 Community Builder:李少奕 2023年6月14日,一年一度的亚马逊云科技 re:Inforce 全球大会在美国安纳海姆落下了帷幕。re:Inforce 是亚马逊云科技全球最大的盛会之一,汇集了来自全球各地的安全专家,共同学习、…...
18. 填坑Ⅰ
Description 又是北湖深坑,惊不惊喜,意不意外?! 觉得用水填湖太没意思了,用石头填坑多有意思。 假设北湖的地面还是一维的,每一块宽度都为1,高度是非负整数,用一个数组来表示。 现提…...
CSS 实现平面圆点绕椭圆动画
前言 👏CSS实现平面圆点绕椭圆动画,速速来Get吧~ 🥇文末分享源代码。记得点赞关注收藏! 1.实现效果 2.实现原理 transform-style:CSS 属性 transform-style 设置元素的子元素是位于 3D 空间中还是平面中。如果选择平面…...
docker login : x509: certificate signed by unknown authority
一. 背景 docker login 登录harbor镜像仓库报错. [rootmaster01 sloth]# docker login docker.harbor.master01.com Username: bigdata Password: Error response from daemon: Get https://docker.harbor.master01.com/v2/: x509: certificate signed by unknown authority …...
金蝶云星空二开,插件查看工具
可查询单据上挂载的系统原有插件、二开插件及插件类型 1.支持模糊查询单据列表 2.支持项目与账套二开插件对比 3.支持金蝶不同账套之间对比差异 操作步骤: 1.登陆界面,选择金蝶云管理中心账套登录获取账套列表; 2.单一标识查询:…...
error: ‘std::_hypot‘ has not been declared using std::hypot;
Cmake 使用qt的编译器 编译opencv时 执行mingw32-make时出现了错误 本质原因就是 _hypot 没有声明。所以找到对应的文件声明一下 就行了。 E:\*****\Qt5.14.1\Tools\mingw730_64\lib\gcc\x86_64-w64-mingw32\7.3.0\include\c 下面的math.h 文件。 可以看到这个文件有一个…...
介绍 Apache Spark 的基本概念和在大数据分析中的应用。
Apache Spark 是一个快速的开源大数据处理引擎,可以用于大数据处理、机器学习、图形计算等领域。它可以在多种计算环境中运行,包括独立模式、YARN、Mesos、Kubernetes等云计算平台。 Spark基于RDD(Resilient Distributed Datasets࿰…...
Java设计模式:四、行为型模式-09:模板模式
文章目录 一、定义:模板模式二、模拟场景:模板模式三、改善代码:模板模式3.0 引入依赖3.1 工程结构3.2 模板模式结构图3.3 爬取商品生成海报实现3.3.1 HTTP获取连接类3.3.2 定义执行顺序的抽象类3.3.3 当当爬取抽象实现类3.3.4 京东爬取抽象实…...
【前端】Vue2 脚手架模块化开发 -快速入门
🎄欢迎来到边境矢梦的csdn博文🎄 🎄本文主要梳理Vue2 脚手架模块化开发 🎄 🌈我是边境矢梦,一个正在为秋招和算法竞赛做准备的学生🌈 🎆喜欢的朋友可以关注一下🫰&#x…...
【广州华锐互动】AR昆虫认知学习系统实现对昆虫形态的捕捉和还原
随着科技的不断发展,人们对自然界的认识也在不断加深。在这个过程中,AR(增强现实)技术的出现为人们带来了全新的体验方式。为此,广州华锐互动开发了AR昆虫认知学习系统,本文将为大家详细介绍这款系统的特点…...
nginx压缩ttf文件 mine.types的作用
最近在运维过程中,前端提到发现在linux上下载某ttl文件(字体文件)太大,传输过程比较慢,于是就想着使用nginx的gzip进行压缩,经过不断尝试,终于发现在nginx的配置目录/etc/nginx/mine.types 文件…...
【云原生】Kubernetes容器编排工具
目录 1. K8S介绍 1.1 k8s的由来 下载地址 1.2 docker编排与k8s编排相比 1.3 传统后端部署与k8s 的对比 传统部署 k8s部署 2. k8s的集群架构与组件 (1) Kube-apiserver (2)Kube-controller-manager (3&a…...
【Css】Less和Sass的区别:
文章目录 一、定义:【1】Less【2】Sass 二、相同之处:三、区别:【1】实现方式:【2】实现方式:【3】混合(Mixins):【4】解析方式:【5】变量的作用域:【6】比起Less 一、定义: 【1】Less Less 是…...
八、MySQL(DML)如何修改表中的数据?
1、修改表数据 (1)基础语法: update 表名 SET 字段名1数值1,字段名2数值2,…… [where 条件]; (2) 操作实例: 第一步: 先准备一张表 insert into things values (10086,18,0x12…...
Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片
一、前言: 使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片 安装包: pip install super_gradients pip install omegaconf pip install hydra-core pip install boto3 pip install stringcase pip install typing-extensions pi…...
<AIX>《AIX RAID 操作之LV逻辑卷镜像制作,即lvcopy操作》
《AIX RAID 操作之LV逻辑卷镜像制作,即lvcopy操作》 1 RAID技术2 AIX逻辑卷组做镜像3 环境3.1 操做系统版本3.2 检查rootvg的lv3.3 检查rootvg的磁盘信息4 创建测试的test的lv逻辑卷4.1 测试1:直接创建镜像lv4.2 测试2:创建未开启镜像的lv 5 …...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
