CCF CSP题解:矩阵运算(202305-2)
链接和思路
OJ链接:传送门
本题要求计算1个公式:
( W ⋅ ( Q × K T ) ) × V \left(\mathbf{W} \cdot (\mathbf{Q} \times \mathbf{K}^{T})\right) \times \mathbf{V} (W⋅(Q×KT))×V
其中, Q \mathbf{Q} Q、 K \mathbf{K} K和 V \mathbf{V} V均是 n n n行 d d d列的矩阵, K T \mathbf{K}^{T} KT,表示矩阵 K \mathbf{K} K的转置, × \times ×表示矩阵乘法。 ⋅ \cdot ⋅为点乘,即对应位相乘,记 W ( i ) \mathbf{W}^{(i)} W(i)为向量 W \mathbf{W} W的第 i i i个元素,即将 ( Q × K T ) (\mathbf{Q} \times \mathbf{K}^{T}) (Q×KT)第 i i i行中的每个元素都与 W ( i ) \mathbf{W}^{(i)} W(i)相乘。
本题有2点需要注意,否则只能过70%的样例:
- 使用
int会导致溢出,可使用long long表示数据。 - 如果按照公式给出的顺序计算,复杂度为 O ( d n 2 ) O(dn^2) O(dn2),注意到 n n n远大于 d d d,因此应该修改运算顺序,优化到 O ( d 2 n ) O(d^2n) O(d2n)。
由于注意到矩阵乘法 A n × m × B m × k \mathbf{A}_{n\times m} \times \mathbf{B}_{m \times k} An×m×Bm×k的复杂度是 O ( n m k ) O(nmk) O(nmk),因此我们尽可能要让 m m m更小,于是原式的计算顺序可以改变为:
( W ⋅ ( Q × K T ) ) × V = W ⋅ ( Q × ( K T × V ) ) \left(\mathbf{W} \cdot (\mathbf{Q} \times \mathbf{K}^{T})\right) \times \mathbf{V} =\mathbf{W} \cdot \left(\mathbf{Q} \times (\mathbf{K}^{T} \times \mathbf{V} ) \right) (W⋅(Q×KT))×V=W⋅(Q×(KT×V))
调整矩阵乘法顺序在矩阵乘法计算中是十分常见的,如果是一连串任意给定的矩阵相乘,可以用动态规划的方法得到最优的矩阵运算效率。此外,使用行优先的方式比列优先更能充分利用缓存命中率,这也是优化矩阵乘法效率的一个思路,但是由于已经满分,因此在本题中我们没有继续优化。
AC代码
#include <iostream>
#include <vector>using namespace std;void print_vector(const vector<vector<long long>> &arr) {for (int i = 0; i < arr.size(); i++) {for (int j = 0; j < arr[0].size(); j++) {if (j != 0)cout << " ";cout << arr[i][j];}cout << endl;}
}int main() {int n, d;cin >> n >> d;vector<vector<long long>> q(n), k(n), v(n);vector<long long> w(n);for (int i = 0; i < n; ++i) {q[i].resize(d);for (int j = 0; j < d; ++j) {cin >> q[i][j];}}for (int i = 0; i < n; ++i) {k[i].resize(d);for (int j = 0; j < d; ++j) {cin >> k[i][j];}}for (int i = 0; i < n; ++i) {v[i].resize(d);for (int j = 0; j < d; ++j) {cin >> v[i][j];}}for (int i = 0; i < n; ++i) {cin >> w[i];}//kv: d x dvector<vector<long long>> kv(d);for (int i = 0; i < d; ++i) {kv[i].resize(d);}for (int i = 0; i < d; ++i) {for (int j = 0; j < d; ++j) {for (int l = 0; l < n; ++l) {kv[i][j] += k[l][i] * v[l][j];}}}//qkv: n x dfor (int i = 0; i < n; ++i) {for (int j = 0; j < d; ++j) {k[i][j] = 0;for (int l = 0; l < d; ++l) {k[i][j] += q[i][l] * kv[l][j];
// printf("k[%d][%d]=%d\n", i, j, k[i][j]);}}}// wqkv: n x dfor (int i = 0; i < n; i++)for (int j = 0; j < d; ++j)k[i][j] *= w[i];print_vector(k);return 0;
}
相关文章:
CCF CSP题解:矩阵运算(202305-2)
链接和思路 OJ链接:传送门 本题要求计算1个公式: ( W ⋅ ( Q K T ) ) V \left(\mathbf{W} \cdot (\mathbf{Q} \times \mathbf{K}^{T})\right) \times \mathbf{V} (W⋅(QKT))V 其中, Q \mathbf{Q} Q、 K \mathbf{K} K和 V \mathbf{V} V均…...
划分字母区间【贪心算法】
划分字母区间 给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。返回一个表示每个字符串片段的长度的列表。…...
低代码的探索之路
Gartner发布报告指出,2023年全球低代码开发平台市场规模将达到345亿美元,比2022年增长20%。 目前,国内外已经有许多低代码平台,包括OutSystems、Mendix、Appian、Microsoft Power App等。这些平台提供了丰富的功能和工具ÿ…...
easyUI combobox不可手动输入和禁用
combobox //下拉可用 $("#selectId").combobox(enable); //下拉不可用 $("#selectId").combobox(disable); //该元素可用 $("#selectId").combobox({ disabled: false }); //该元素不可用 $("#selectId").combobox({ disabled: tru…...
RV64和ARM64栈结构差异
RV64和ARM64栈结构差异 1 RV64和ARM64栈结构差异示意图1.1 RV64和ARM64寄存器介绍1.1.1 RV64寄存器1.1.2 ARM64寄存器 1.2 RV64和ARM64栈结构差异示意图 2 RV64和ARM64栈使用示例2.1 测试的程序2.2 RV64反汇编的汇编程序2.3 ARM64反汇编的汇编程序2.4 RV64和ARM64测试程序的栈结…...
将 Python 与 RStudio IDE 配合使用(R与Python系列第一篇)
目录 前言: 1-安装reticulate包 2-安装Python 3-选择Python的默认版本(配置Python环境) 4-使用Python 4.1 运行一个简单的Python脚本 4.2 在RStudio上安装Python模块 4.3 在 R 中调用 Python 模块 4.4 在RStudio上调用Python脚本写的…...
数据库访问性能优化
目录 IO性能分析数据库性能优化漏斗法则1、减少数据访问(减少磁盘访问)(1) 正确的创建并使用索引索引生效场景索引失效场景判断索引是否生效--执行计划 2、返回更少数据(减少网络传输或磁盘访问)(1) 数据分页处理(减少行数)客户端…...
vue 预览 有token验证的 doc、docx、pdf、xlsx、csv、图片 并下载
预览 doc我也不会 //docx <div v-if"previewType docx" ref"iframeDom" style"border: none; width: 100%; height: 100%"></div> import { renderAsync } from "docx-preview"; let iframeDom: any ref(); axios({url…...
WPF数据视图
将集合绑定到ItemsControl控件时,会不加通告的在后台创建数据视图——位于数据源和绑定的控件之间。数据视图是进入数据源的窗口,可以跟踪当前项,并且支持各种功能,如排序、过滤、分组。 这些功能和数据对象本身是相互独立的&…...
C++ new/delete 与 malloc/free 的区别?
new/delete 与 malloc/free 的区别? 分配内存的位置 malloc是从堆上动态分配内存new是从自由存储区为对象动态分配内存。自由存储区的位置取决于operator new的实现。自由存储区不仅可以为堆,还可以是静态存储区,这都看operator new在哪里为…...
【数学建模】常微分,偏微分方程
1.常微分方程 普通边界 已知t0时刻的初值 ode45() 龙格-库塔法 一阶,高阶都一样 如下: s(1) y , s(2)y s(3) x , s(4)x //匿名函数 下为方程组 核心函数 s_chuzhi [0;0;0;0]; //初值 分别两个位移和速度的初值 t0 0:0.2:180; f (t,s)[s(2);(…...
浙大数据结构之09-排序1 排序
题目详情: 给定N个(长整型范围内的)整数,要求输出从小到大排序后的结果。 本题旨在测试各种不同的排序算法在各种数据情况下的表现。各组测试数据特点如下: 数据1:只有1个元素;数据2…...
Pydantic 学习随笔
这里是零散的记录一些学习过程中随机的理解,因此这里的记录不成体系。如果是想学习 Pydantic 建议看官方文档,写的很详细并且成体系。如果有问题需要交流,欢迎私信或者评论。 siwa 报 500 Pydantic 可以和 siwa 结合使用,这样既…...
11 mysql float/double/decimal 的数据存储
前言 这里主要是 由于之前的一个 datetime 存储的时间 导致的问题的衍生出来的探究 探究的主要内容为 int 类类型的存储, 浮点类类型的存储, char 类类型的存储, blob 类类型的存储, enum/json/set/bit 类类型的存储 本文主要 的相关内容是 float, decimal 类类型的相关数据…...
【高效数据结构——位图bitmap】
初识位图bitmap 位图(Bitmap)是一种用于表示和操作位(bit)的数据结构。它是由一系列二进制位(0 或 1)组成的序列,每个位都可以单独访问和操作。 位图常用于以下情况: 压缩存储&…...
ArrayList LinkedList
ArrayList 和 LinkedList 区别 ArrayList和LinkedList都是Java集合框架中的实现类,用于存储和操作数据。它们在底层实现和性能特点上有一些区别。 数据结构:ArrayList底层使用数组实现,而LinkedList底层使用双向链表实现。这导致它们在内存结…...
iOS砸壳系列之三:Frida介绍和使用
当涉及从App Store下载应用程序时,它们都是已安装的iOS应用(IPA)存储在设备上。这些应用程序通常带有保护的代码和资源,以限制用户对其进行修改或者逆向工程。 然而,有时候,为了进行调试、制作插件或者学习…...
Git学习——细节补充
Git学习——细节补充 1. git diff2. git log3. git reset4. git reflog5. 提交撤销5.1 当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时5.2 当提交到了stage区后,想要退回 6. git remote7. git pull origin master --no-rebase8. 分支管理9. g…...
【设计模式】Head First 设计模式——装饰者模式 C++实现
设计模式最大的作用就是在变化和稳定中间寻找隔离点,然后分离它们,从而管理变化。将变化像小兔子一样关到笼子里,让它在笼子里随便跳,而不至于跳出来把你整个房间给污染掉。 设计思想 动态地将责任附加到对象上,若要扩…...
layui实现数据列表的复选框回显
layui版本2.8以上 实现效果如图: <input type"hidden" name"id" id"id" value"{:g_val( id,0)}"> <div id"tableDiv"><table class"layui-hide" id"table_list" lay-filter…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
