YOLOv5:对yolov5n模型进一步剪枝压缩
YOLOv5:对yolov5n模型进一步剪枝压缩
- 前言
- 前提条件
- 相关介绍
- 具体步骤
- 修改yolov5n.yaml配置文件
- 单通道数据(黑白图片)
- 修改models/yolo.py文件
- 修改train.py文件
- 剪枝后模型大小
- 参考
前言
- 由于本人水平有限,难免出现错漏,敬请批评改正。
- 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
专栏或我的个人主页查看- 基于DETR的人脸伪装检测
- YOLOv7训练自己的数据集(口罩检测)
- YOLOv8训练自己的数据集(足球检测)
- YOLOv5:TensorRT加速YOLOv5模型推理
- YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
- 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
- YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
- YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
- Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
- YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
- 使用Kaggle GPU资源免费体验Stable Diffusion开源项目
前提条件
- 熟悉Python
相关介绍
- Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
- PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
- YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
- 剪枝是一种通过去除网络中冗余的channels,filters, neurons, or layers以得到一个更轻量级的网络,同时不影响性能的方法。
具体步骤
修改yolov5n.yaml配置文件
- YOLOv5相关YAML配置里面参数含义,可查阅YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层:
https://blog.csdn.net/FriendshipTang/article/details/130375883- 这里顺带解释一下,
depth_multiple和width_multiple参数含义。
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
- nc: 8 代表数据集中的类别数目。- depth_multiple: 0.33- 用来控制模型的深度,仅在number≠1时启用。- 如第一个C3层的参数设置为[-1, 3, C3, [128]],其中number=3,表示在yolov5s中含有 3 × 0.33 ≈ 1个C3。- width_multiple: 0.50- 用来控制模型的宽度,主要作用于args中的channel_out。- 如第一个Conv层,输出通道数channel_out=64,那么在yolov5s中,会将卷积过程中的卷积核设置为 64 × 0.50 = 32,所以会输出 32 通道的特征图。
将
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
改为
depth_multiple: 0.16 # model depth multiple
width_multiple: 0.125 # layer channel multiple
即可达到减少卷积层数的目的。

单通道数据(黑白图片)
- 如果数据集是单通道数据,即黑白图片数据集,还可以修改训练时输入的通道数
(yolov5默认输入通道数ch=3,我们可以修改ch=1),减少训练参数。- 如果是彩色图片数据集,可跳过此部分的内容。
修改models/yolo.py文件
- 在
if m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)
添加:
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):c1, c2 = ch[f], args[0]# 添加的内容if i == 0: # 第一层输入,为单通道图片c1 = 1if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)

- 在
# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
添加:
# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels# 添加的内容self.yaml['ch'] = 1ch = self.yaml['ch']

修改train.py文件
- 将
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
改为
# 修改的内容
# model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
model = Model(cfg or ckpt['model'].yaml, ch=1, nc=nc, anchors=hyp.get('anchors')).to(device) # create

- 将
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
改为
# 修改的内容
# model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
model = Model(cfg, ch=1, nc=nc, anchors=hyp.get('anchors')).to(device) # create

- 在
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------callbacks.run('on_train_batch_start')ni = i + nb * epoch # number integrated batches (since train start)imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0# Warmupif ni <= nw:xi = [0, nw] # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
添加:
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------callbacks.run('on_train_batch_start')ni = i + nb * epoch # number integrated batches (since train start)# imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0# 添加的内容,目的是将训练集的图片变为单通道图片(黑白图片)imgs = imgs[:, 0, :, :].unsqueeze(1).to(device, non_blocking=True).float() / 255 # Warmupif ni <= nw:xi = [0, nw] # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

剪枝后模型大小
- 原来的yolo5n模型大小为3.5m,剪枝训练后的yolo5n模型大小为2.6m。
参考
[1] https://github.com/ultralytics/yolov5
- 由于本人水平有限,难免出现错漏,敬请批评改正。
- 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
专栏或我的个人主页查看- 基于DETR的人脸伪装检测
- YOLOv7训练自己的数据集(口罩检测)
- YOLOv8训练自己的数据集(足球检测)
- YOLOv5:TensorRT加速YOLOv5模型推理
- YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
- 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
- YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
- YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
- Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
- YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
- 使用Kaggle GPU资源免费体验Stable Diffusion开源项目
相关文章:
YOLOv5:对yolov5n模型进一步剪枝压缩
YOLOv5:对yolov5n模型进一步剪枝压缩 前言前提条件相关介绍具体步骤修改yolov5n.yaml配置文件单通道数据(黑白图片)修改models/yolo.py文件修改train.py文件 剪枝后模型大小 参考 前言 由于本人水平有限,难免出现错漏,…...
大数据(八):Pandas的基础应用详解(五)
专栏介绍 结合自身经验和内部资料总结的Python教程,每天3-5章,最短1个月就能全方位的完成Python的学习并进行实战开发,学完了定能成为大佬!加油吧!卷起来! 全部文章请访问专栏:《Python全栈教程(0基础)》 再推荐一下最近热更的:《大厂测试高频面试题详解》 该专栏对…...
【算法】归并排序 详解
归并排序 详解 归并排序代码实现1. 递归版本2. 非递归版本 排序: 排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性: 假定在待排序的记录序列中,存在多个具有相…...
linux 进程隔离Namespace 学习
一、linux namespace 介绍 1.1、概念 Linux Namespace是Linux内核提供的一种机制,它用于隔离不同进程的资源视图,使得每个进程都拥有独立的资源空间,从而实现进程之间的隔离和资源管理。 Linux Namespace的设计目标是为了解决多个进程之间…...
【MySQL】事务 详解
事务 详解 一. 为什么使用事务二. 事务的概念三. 使用四. 事务的特性原子性(Atomicity)一致性(Consistency)隔离性(Isolation)持久性(Durability) 五. 事务并发所带来的问题脏读问题…...
爬虫到底难在哪里?
目录 爬虫到底难在哪里 怎么学习爬虫 注意事项 爬虫工具 总结 学习Python爬虫的难易程度因人而异,对于具备编程基础的人来说,学习Python爬虫并不困难。Python语言本身比较简单易学,适合初学者使用。 爬虫到底难在哪里 爬虫的难点主要包…...
linux常用命令行整理
1、linux的以及目录 bin 二进制可执行文件sbin 二进制可执行文件(root用户权限)etc 系统管理和配置文件,例如常见host文件home 用户文件的根目录usr 用户存放系统应用程序(共享系统资源)opt 可选的应用程序proc 虚拟文件系统root 超级用户dev 存放设备文件mnt 系统管理员安装临…...
python字符串相关
python字符串相关 一、reverse() 函数 只能反转 列表二、reversed() 反转元组字符串等等 返回迭代器三、join和reversed反转字符串四、join串联字符串(join连接对象仅限字符串、储存字符串的元组、列表、字典)数字对象可通过str()转化为字符串⭐对象为字…...
JavaScript学习笔记01
JavaScript笔记01 什么是 JavaScript JavaScript 是一门世界上最流行的脚本语言,它是一种弱类型的脚本语言,其代码不需要经过编译,而是由浏览器解释运行,用于控制网页的行为。 发展历史 参考:JavaScript的起源故事…...
golang 通用的 grpc http 基础开发框架
go-moda golang 通用的 grpc http 基础开发框架仓库地址: https://github.com/webws/go-moda仓库一直在更新,欢迎大家吐槽和指点 特性 transport: 集成 http(echo、gin)和 grpc。tracing: openTelemetry 实现微务链路追踪pprof: 分析性能config: 通用…...
FSK解调技术的FPGA实现
本原创文章由深圳市小眼睛科技有限公司创作,版权归本公司所有,如需转载,需授权并注明出处 一、FSK信号的解调原理 FSK信号的解调也有非相干和相干两种,FSK信号可以看作是用两个频率源交替传输得到的,所以FSK的接收机由…...
Matlab图像处理-高斯低通滤波器
高通滤波 图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的。高通滤波就是为了高消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,消除低频噪声成分削弱,再经傅里叶逆变换得到边缘锐化的图像。 …...
文件上传之图片马混淆绕过与条件竞争
一、图片马混淆绕过 1.上传gif imagecreatefromxxxx函数把图片内容打散,,但是不会影响图片正常显示 $is_upload false; $msg null; if (isset($_POST[submit])){// 获得上传文件的基本信息,文件名,类型,大小&…...
代码随想录二刷day16
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣104. 二叉树的最大深度二、力扣559. N 叉树的最大深度三、力扣111. 二叉树的最小深度三、力扣力扣222. 完全二叉树的节点个数 前言 一、力扣104. 二叉树…...
【开发】安防监控/视频存储/视频汇聚平台EasyCVR优化播放体验的小tips
视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同,可实现视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、H.265自动转码H.264、平台级联等。为了便于用户二次开发、调用与集成,…...
力扣(LeetCode)算法_C++—— 只出现一次的数字
给你一个 非空 整数数组 nums ,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。 示例 1 : 输入࿱…...
Windows配置SonarQube代码审查工具详细步骤(附带IDEA SonarLint插件使用)
文章目录 环境说明以及准备一. SonarQube的下载与安装二. 添加SonarQube项目三. 使用Maven命令上传代码到SonarQube四. IDEA安装SonarLint插件 环境说明以及准备 本篇博客使用的SonarQube版本为9.8,注意JDK 1.8已经不能支持 NameVersionDownLoad LinkSonarQube9.8…...
【Unity3D】UI Toolkit元素
1 前言 UI Toolkit简介 中介绍了 UI Builder、样式属性、UQuery、Debugger,UI Toolkit容器 中介绍了 VisualElement、ScrollView、ListView、GroupBox 等容器,UI Toolkit样式选择器 中介绍了简单选择器、复杂选择器、伪类选择器等样式选择器,…...
Task :app:compileDebugKotlin FAILED
gradle.properties 里面加上 android.enableJetifiertrue...
Android——数据存储(一)(二十一)
1. 数据存储 1.1 知识点 (1)掌握Android数据存储的分类; (2)可以使用SharedPreferences存储数据。 1.2 具体内容 对于我们数据的存储而言,Android一共提供了5个数据存储的方式:SharedPrefe…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
【Java多线程从青铜到王者】单例设计模式(八)
wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本,sleep也是可以指定时间的,也就是说时间一到就会解除阻塞,继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒),wait能被notify提前唤醒…...
Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目
应用场景: 1、常规某个机器被钓鱼后门攻击后,我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后,我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...
Easy Excel
Easy Excel 一、依赖引入二、基本使用1. 定义实体类(导入/导出共用)2. 写 Excel3. 读 Excel 三、常用注解说明(完整列表)四、进阶:自定义转换器(Converter) 其它自定义转换器没生效 Easy Excel在…...
