Python_操作记录
1、Pandas读取数据文件(以文本文件作为示例),sep表示间隔,header=None表示无标题行
df = pd.read_table("data/youcans3.dat", sep="\t", header=None)
2、线性规划问题求解
1)问题定义,确定决策变量、目标函数和约束条件;
2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型;
3)模型求解,用标准模型的优化算法对模型求解,得到优化结果。
很多Python的第三方包,都提供求解线性规划问题的算法,有的工具包还提供证书规划、非线性规划的算法,例如:
1)Scipy提供了了解简单线性或非线性规划问题,但是不能求解如背包问题的0-1规划问题,或整数规划问题,混合整数规划问题。
2)PuLP可以求解线性规划、整数规划、0-1规划、混合整数规划、二次规划和几何规划问题
2.1 PuLP库求解线性规划问题
import pulp
#1、定义一个规划问题,Demo表示问题名称,sense表示最大/最小参数(LpMinimize、LpMaximize)
m = pulp.LpProblem("Demo", sense=pulp.LpMaximize)
#定义决策变量(名称,上限,下限,参数)
#2、cat来设置变量类型,'Continuous'表示连续变量(默认值),'Integer'表示离散变量,'Binary'表示0/1变量
x1 = pulp.LpVariable('x1',lowBound=0,upBound=7,cat='Continuous')
x2 = pulp.LpVariable('x2',lowBound=0,upBound=7,cat='Continuous')
x3 = pulp.LpVariable('x3',lowBound=0,upBound=7,cat='Continuous')
#3、添加目标函数
m += 2*x1 + 3*x2 - 5*x3
#4、添加约束条件
m += (2*x1 - 5*x2 + x3 >= 10)
m += (x1 + 3*x2 + x3 <= 12)
m += (x1 + x2 + x3 == 7)
#5、求解
m.solve()
print("Satus:",pulp.LpStatus[m.status]) #输出求解状态
for v in m.variables():print(v.name,"=",v.varValue) #输出每个变量的最优值
print("F(x) = ",pulp.value(m.objective)) #输出最优解的目标函数值
相关文章:
Python_操作记录
1、Pandas读取数据文件(以文本文件作为示例),sep表示间隔,headerNone表示无标题行 df pd.read_table("data/youcans3.dat", sep"\t", headerNone) 2、线性规划问题求解 1)问题定义,…...
常用激活函数整理
最近一边应付工作,一边在补足人工智能的一些基础知识,这个方向虽然新兴,但已是卷帙浩繁,有时不知从何入手,幸亏有个适合基础薄弱的人士学习的网站,每天学习一点,积跬步以至千里吧。有像我一样学…...
uniapp 地图跳转到第三方导航软件 直接打包成apk
// 判断是否存在导航软件judgeHasExistNavignation() {let navAppParam [{pname: com.baidu.BaiduMap,action: baidumap://}, // 百度{pname: com.autonavi.minimap,action: iosamap://}, // 高德{pname: com.tencent.map,action: tencentmap://}, // 腾讯];return navAppPara…...
CentOS 8 通过YUM方式升级最新内核
CentOS 8 通过YUM方式升级最新内核 查看当前内核 uname -r 4.18.0-193.6.3.el8_2.x86_64导入 ELRepo 仓库的公钥: rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org安装升级内核相关的yum源仓库(安装 ELRepo 仓库的 yum 源) yum install https://www…...
java 版本企业招标投标管理系统源码+功能描述+tbms+及时准确+全程电子化
功能描述 1、门户管理:所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含:招标公告、非招标公告、系统通知、政策法规。 2、立项管理:企业用户可对需要采购的项目进行立项申请,并提交审批,查看所…...
Python爬虫数据存哪里|数据存储到文件的几种方式
前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 爬虫请求解析后的数据,需要保存下来,才能进行下一步的处理,一般保存数据的方式有如下几种: 文件:txt、csv、excel、json等,保存数据量小。 关系型数据库…...
软件测试/测试开发丨Web自动化 测试用例流程设计
点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/27173 一、测试用例通用结构回顾 1.1、现有测试用例存在的问题 可维护性差可读性差稳定性差 1.2、用例结构设计 测试用例的编排测试用例的项目结构 1…...
git撤销修改命令
要撤销Git中尚未提交的所有修改,可以使用以下几种方法: 1、使用git checkout命令丢弃工作目录的修改,重置工作目录中所有文件的修改。 git checkout . 2、使用git reset命令重置暂存区和工作目录, 重置暂存区和工作目录,回到最后一次提交后的状态。 …...
EOCR-AR电机保护器自动复位的启用条件说明
为适用不同的现场使用需求,施耐德韩国公司推出了带有自动复位功能的模拟型电动机保护器-EOCR-AR。EOCR-AR电机保护器具有过电流、缺相、堵转保护功能,还可根据实际需要设置自动复位时间。 EOCR-AR自动复位的设置方法 如上图,R-TIME旋钮是自动…...
Apache nginx解析漏洞复现
文章目录 空字节漏洞安装环境漏洞复现 背锅解析漏洞安装环境漏洞复现 空字节漏洞 安装环境 将nginx解压后放到c盘根目录下: 运行startup.bat启动环境: 在HTML文件夹下有它的主页文件: 漏洞复现 nginx在遇到后缀名有php的文件时,…...
.NET之后,再无大创新
回想起来,2001年发布的.NET已经是距离最近的一次软件开发技术的整体创新了,后续的新技术就没有在各个端都这么成功的了。.NET是Windows平台下软件开发技术的巨大变革。在此之前,有VB、C(MFC)、JSP,在此之后…...
【大麦小米学量化】什么是量化交易?哪些人适合做量化交易?
系列文章目录 文章目录 系列文章目录学霸的梦想前言一、什么是量化交易?二、哪些人适合做量化交易?三、量化交易都需要掌握哪些技术和方法?总结 学霸的梦想 小米支棱着迷糊的眼睛,一脸懵逼的问大麦:“我说大麦哥哥&…...
计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程
大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程。 要理解卷积神经网络中图像特征提取的全过程,我们可以将其比喻为人脑对视觉信息的处理过程。就像…...
el-table中点击跳转到详情页的两种方法
跳转的两种写法: 1.使用keep-alive使组件缓存,防止刷新时参数丢失 keep-alive 组件用于缓存和保持组件的状态,而不是路由参数。它可以在组件切换时保留组件的状态,从而避免重新渲染和加载数据。 keep-alive 主要用于提高页面性能和用户体验,而…...
RT-DETR个人整理向理解
一、前言 在开始介绍RT-DETR这个网络之前,我们首先需要先了解DETR这个系列的网络与我们常提及的anchor-base以及anchor-free存在着何种差异。 首先我们先简单讨论一下anchor-base以及anchor-free两者的差异与共性: 1、两者差异:顾名思义&…...
易点易动库存管理系统与ERP系统打通,帮助企业实现低值易耗品管理
现今,企业管理日趋复杂,无论是核心经营还是辅助环节,都需要依靠信息化手段来提升效率。而低值易耗品作为企业日常运营中的必需品,其管理也面临诸多挑战。传统做法效率低下,容易出错。如何通过信息化手段实现低值易耗品的高效管理,成为许多企业必顾及的一个课题。 易点易动作为…...
【笔试强训选择题】Day34.习题(错题)解析
作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:笔试强训选择题 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!!ÿ…...
“现代”“修饰”卷积神经网络,何谓现代
一、“现代” vs “传统” 现代卷积神经网络(CNNs)与传统卷积神经网络之间存在一些关键区别。这些区别主要涉及网络的深度、结构、训练技巧和应用领域等方面。以下是现代CNNs与传统CNNs之间的一些区别: 深度: 传统CNNs࿱…...
XHTML基础知识了解
XHTML是一种严格符合XML规范的标记语言,它的基本语法和HTML类似,但是更加严谨和规范。XHTML的代码结构非常清晰,方便浏览器和搜索引擎解析。下面是一些XHTML的基础知识和代码示例: 声明文档类型(DTD) 在X…...
USB Server集中管控加密狗,浙江省电力设计院正在用
近日,软件加密狗的分散管理和易丢失性,给拥有大量加密狗的浙江省电力设计院带来了一系列的问题。好在浙江省电力设计院带及时使用了朝天椒USB Server方案,实现了加密狗的集中安全管控,避免了加密狗因为管理不善和遗失可能带来的巨…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
