当前位置: 首页 > news >正文

宜兴网站建设/百度问答库

宜兴网站建设,百度问答库,金融网站模版下载,兰州吸引用户的网站设计在本文中,您将找到我对人工智能和工作的最新研究的总结(探索人工智能对生产力的影响,同时开启对长期影响的讨论),一个准实验方法的示例(通过 ChatGPT 和 Stack Overflow 进行说明,了解如何使用简…

在本文中,您将找到我对人工智能和工作的最新研究的总结(探索人工智能对生产力的影响,同时开启对长期影响的讨论),一个准实验方法的示例(通过 ChatGPT 和 Stack Overflow 进行说明,了解如何使用简单的 SQL 查询从 Stack Overflow 中提取数据。

作为与大多数技术革命一样,ChatGPT 的发布伴随着新奇和革命性的创新。一方面,在短短两个月内,该应用程序就拥有 1 亿月活跃用户,打破了历史上增长最快的消费者应用程序的记录。另一方面,高盛的一份报告声称,此类技术可能会取代全球超过 3 亿个工作岗位。此外,埃隆·马斯克 (Elon Musk) 与 1,000 多名技术领导者和研究人员签署了一封公开信,敦促暂停最先进的人工智能开发 。

“我们只能看到前方很短的距离,但我们可以看到很多需要做的事情。”艾伦·图灵

根据艾伦·图灵的引言,本文并不试图预测人工智能的遥远未来及其影响。然而,我关注的是影响我们的主要可观察后果之一:人工智能如何改变我们的编码方式。

ChatGPT 的诞生改变了世界。至少,作为一个每天都编码的人,我的世界一夜之间就改变了。我不必花几个小时在 Google 上寻找正确的解决方案,也不必在 Stack Overflow 上深入研究答案,并使用正确的变量名称和矩阵维度将解决方案转化为我的确切问题,我可以直接询问 ChatGPT。ChatGPT不仅会在眨眼之间给我答案,而且答案会适合我的具体情况(例如正确的名称、数据帧尺寸、变量类型等)。我大吃一惊,我的工作效率突然飙升。

因此,我决定探索 ChatGPT 发布的大规模影响及其对生产力以及最终对我们工作方式的潜在影响。我定义了三个假设 (Hs),并使用 Stack Overflow 数据进行了测试。

H1:ChatGPT 减少了 Stack Overflow 上提出的问题数量。如果 ChatGPT 可以在几秒钟内解决编码问题,那么我们可以预期编码社区平台上的问题会减少,因为提出问题和获得答案需要时间。

H2:ChatGPT 提高了所提问题的质量。如果 ChatGPT 被大量使用,那么 Stack Overflow 上的剩余问题必须得到更好的记录,因为 ChatGPT 可能已经有所帮助。

H3:剩下的问题更加复杂。我们可以预期剩下的问题更具挑战性,因为 ChatGPT 可能无法回答这些问题。因此,为了测试这一点,我们正在测试未回答问题的比例是否增加。此外,我还测试每个问题的浏览量是否发生变化。如果每个问题的浏览量保持稳定,这将是一个额外的迹象,表明剩余问题的复杂性增加了,并且这一发现不仅仅是由平台上的活动减少引起的。

为了测试这些假设,我将利用 Stack Overflow 上突然发布的 ChatGPT。2022 年 11 月,当 OpenAI 公开发布他们的ChatGPT时,没有其他替代品可用(例如 Google Bard),并且访问是免费的(不限于 OpenAI ChatGPT 4 或 Code Interpreter 等付费订阅)。因此,可以观察在线编码社区在震惊之前和之后的活动如何变化。然而,尽管这种冲击多么“干净”,其他影响可能会被混淆,从而质疑因果关系。特别是季节性(例如发布后的年末假期)以及问题越新,浏览量和找到答案的概率就越低。

理想情况下,为了减轻季节性等潜在混杂变量的影响并衡量因果效应,我们希望在没有 ChatGPT 发布的情况下观察世界,这是不可能的(例如因果推理的基本问题)。尽管如此,我将通过利用 ChatGPT 对编码相关问题的答案质量因一种语言而异而另一种语言不同这一事实来应对这一挑战,并使用准实验方法来限制其他因素混淆效果的风险(Difference-in -不同之处)。

为此,我将比较 Python 和 R 之间的 Stack Overflow 活动。Python 是一个显而易见的选择,因为它可以说是最
流行的编程语言之一(例如,在 TIOBE 中排名第一)
Python 的大量在线资源为 ChatGPT 等ChatGPT提供了丰富的训练集。现在,为了与 Python 进行比较,我选择了 R。Python 通常被认为是 R 的最佳替代品,而且两者都是免费的。然而,R 不太受欢迎(例如,在 TIOBE 编程社区索引中排名第 16),因此训练数据可能较小,这意味着 ChatGPT 的性能较差。证据证实了这种差异(有关该方法的更多详细信息,请参阅方法部分)。因此,R 代表了 Python 的有效反事实(它受到季节性影响,但我们可以预期 ChatGPT 的影响可以忽略不计)。

图1:ChatGPT对Stack Overflow每周提问数量的影响
 

上图显示了原始的每周数据。我们可以看到,在 ChatGPT 3.5 发布后,Stack Overflow 上每周提出的有关 Python 的问题数量突然大幅下降 (21.2%),而对 R 的影响则稍小一些(下降了 15.8%)。

这些“定性”观察得到了统计模型的证实。稍后描述的计量经济学模型发现,Stack Overflow 上的 Python 每周问题平均下降了 937.7 个(95% CI:[-1232.8,-642.55 ];p 值 = 0.000),具有统计显着性。随后的分析利用 Diff-in-Diff 方法,进一步揭示了问题质量的提高(在平台上通过分数来衡量),同时未回答问题的比例也有所增加(而每个问题的平均浏览量似乎有所增加)。不变)。因此,本研究为之前定义的三个假设提供了证据。

这些发现强调了人工智能在我们工作方式中的深远作用。通过解决日常查询,生成式人工智能使个人能够将精力投入到更复杂的任务上,同时提高他们的生产力。然而,重要的长期潜在不利影响也在讨论部分进行了讨论。

本文的其余部分将介绍数据和方法,然后是结果,并以讨论结束。

数据

数据是使用Stack Overflow 数据浏览器门户上的 SQL 查询提取的(许可证:CC BY-SA)。这是使用的 SQL 命令:

SELECT Id, CreationDate, Score, ViewCount, AnswerCount
FROM Posts
WHERE Tags LIKE '%<python>%'
AND CreationDate BETWEEN '2022–10–01' AND '2023–04–30'
AND PostTypeId = 1;

然后,我按周汇总数据以减少噪音,从而获得了从 2022 年 10 月 17 日星期一到 2023 年 3 月 19 日的数据集,其中包含有关每周帖子数量、观看次数、每个问题的观看次数的信息,每个问题的平均分以及未回答问题的比例。分数由平台用户定义,他们可以投票赞成或反对,以判断问题是否显示“研究努力;它是否有用且清晰” 。

方法

为了测量因果效应,我使用了双重差分模型,这是一种计量经济学方法,通常利用随时间的变化并将处理单位与未处理组进行比较。

简而言之,Diff-in-Diff 模型计算双重差异以识别因果效应。这是一个简化的解释。首先,我们的想法是计算两个简单的差异:治疗组和未治疗组(此处分别是 Python 和 R 问题)的前(ChatGPT 发布之前)和后时期之间的“平均”差异。我们关心的是处理对处理单元的影响(这里是ChatGPT发布对Python问题的影响)。然而,如前所述,可能还有另一种影响仍然与治疗相混淆(例如季节性)。为了解决这个问题,该模型的想法是计算双重差异,以检查处理组 (Python) 的第一个差异与第二个差异(对照组 R 的差异)有何不同。

这是一个稍微更正式的表示。

参考值的第一个差异:

E[Yᵢ| Treatedᵢ, Post]-E[Yᵢ| Treatedᵢ, Preₜ] = λ+β

这里的 i 和 t 分别指的是语言(R 或 Python)和周。While对待是指与Python相关的问题,Post是指ChatGPT可用的时期。这个简单的差异可能代表 ChatGPT (β) + 某些时间效应 λₜ 的因果效应(例如季节性)。

控制变量组组的第一个差异:

E[Yᵢ| Controlᵢ, Post]-E[Yᵢ| Controlᵢ, Pre] = λ

对照组的简单差异不包括治疗效果(因为未经治疗),而仅包括 λ。

因此,双重差分将给出:

DiD = ( λ+β) — λ = β

假设两组的 λ相同(平行趋势假设,如下所述),双重差异将使我们能够识别 β,即因果效应。

该模型的本质在于平行趋势假设。为了断言因果效应,我们应该相信,如果没有 ChatGPT,Stack Overflow 上 Python(已处理)和 R(未处理)帖子的演变在处理期间(2022 年 11 月之后)将是相同的。然而,这显然不可能观察到,因此无法直接测试(参见因果推理的基本问题)。然而,可以测试冲击之前的趋势是否平行,这表明对照组是一个潜在的良好“反事实”。对数据进行的两个不同的安慰剂测试表明,我们不能拒绝 ChatGPT 之前时期的平行趋势假设(测试的 p 值分别为 0.722 和 0.397(参见在线附录 B))。

正式定义:

Yᵢ = β₀ + β₁ Pythonᵢ + β₂ ChatGPT + β₃ Pythonᵢ × ChatGPT+ uᵢ

“i”和“t”分别对应 Stack Overflow 上问题的主题(i ∈ {R; Python})和周。Yᵢ 表示结果变量:问题数量 (H1)、平均问题得分 (H2) 和未回答问题的比例 (H3)。Pythonᵢ 是一个二元
变量,如果问题与 Python 相关,则取值 1,
否则取值 0(与 R 相关)。ChatGPTₜ是另一个二进制变量,
从 ChatGPT 版本及之后的版本开始,其值为 1,
否则为 0。uᵢ 是聚集在编码语言级别 (i) 的错误项

该模型的本质在于平行趋势假设。为了断言因果效应,我们应该相信,如果没有 ChatGPT,Stack Overflow 上 Python(已处理)和 R(未处理)帖子的演变在处理期间(2022 年 11 月之后)将是相同的。然而,这显然不可能观察到,因此无法直接测试(参见因果推理的基本问题)。然而,可以测试冲击之前的趋势是否平行,这表明对照组是一个很好的“反事实”。在这种情况下,两个不同的安慰剂测试表明,我们不能拒绝 ChatGPT 之前时期的平行趋势假设(测试的 p 值分别为 0.722 和 0.397(参见在线附录 B))。

结果

H1:ChatGPT 减少了 Stack Overflow 上提出的问题数量。

如简介中所述,Diff-in-Diff 模型估计 Stack Overflow 上的 Python 每周问题平均下降了 937.7 个(95% CI:[-1232.8, -642.55];p 值 = 0.000)(参见如下图2)。这意味着每周的问题数量下降了 18%。

图 2:ChatGPT 对每周问题数量的影响

H2:ChatGPT 提高了所提问题的质量。

ChatGPT 可能有助于回答问题(参见 H1)。然而,当ChatGPT无法解决问题时,它可能允许人们走得更远,获得有关问题或解决方案某些要素的更多信息。该平台允许我们测试这个假设,因为如果用户认为“这个问题显示了研究成果;有用且清晰”(增加 1 分)或没有(减少 1 分)第二次回归估计问题得分平均增加 0.07 分(95% CI:[-0.0127 , 0.1518 ];p 值:0.095)(见图 3),即增加 41.2%。

图 3:ChatGPT 对问题质量的影响(作者提供的图片)

H3:剩下的问题更加复杂。

现在我们有一些证据表明 ChatGPT 能够提供重要的帮助(解决问题并帮助记录其他问题),我们想确认剩下的问题更加复杂。为此,我们要考虑两件事。首先,我发现未回答问题的比例正在上升(没有答案可能表明问题更加复杂)。更准确地说,我发现未回答的问题比例增加了 2.21 个百分点(95% CI:[ 0.12, 0.30];p 值:0.039)(见图 4),这意味着增加了 6.8%。其次,我们还发现每个问题的观看次数没有变化(我们不能拒绝它没有变化的零假设,p 值为 0.477)。

图4:ChatGPT对未回答问题比例的影响

讨论

这些发现支持这样一种观点,即生成式人工智能可以通过处理常规问题彻底改变我们的工作,使我们能够专注于需要专业知识的更复杂的问题,同时提高我们的生产力。

相关文章:

GPT-人工智能如何改变我们的编码方式

在本文中&#xff0c;您将找到我对人工智能和工作的最新研究的总结&#xff08;探索人工智能对生产力的影响&#xff0c;同时开启对长期影响的讨论&#xff09;&#xff0c;一个准实验方法的示例&#xff08;通过 ChatGPT 和 Stack Overflow 进行说明&#xff0c;了解如何使用简…...

混淆技术研究-混淆技术简介(1)

背景 在实际的移动安全分析过程中,遇到的混淆防护技术越来越多,因此分析难度逐渐增大,本系列技术研究主要通过对目前已有的混淆技术进行详细的技术分析,包括原理分析、反混淆技术等。本文是此系列的第一篇,主要是介绍目前市场上存在的混淆技术及其简单原理概述。 混淆技…...

HTML5+CSS3+JS小实例:科技感满满的鼠标移动推开粒子特效

实例:科技感满满的鼠标移动推开粒子特效 技术栈:HTML+CSS+JS 效果: 源码: 【html】 <!DOCTYPE html> <html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"><meta name="viewport&qu…...

某物联网数智化园区行业基于 KubeSphere 的云原生实践

公司简介 作为物联网 数智化园区一体化解决方案提供商&#xff0c;我们致力于为大中型园区、停车场提供软硬件平台&#xff0c;帮助园区运营者实现数字化、智能化运营。 在使用 K8s 之前我们使用传统的方式部署上线&#xff0c;使用 spug&#xff08;一款轻量级无 Agent 的自…...

MySQL查询数据库所有表名及其注释

1 查询 数据库 所有表 select table_name from information_schema.tables where table_schemasdam 2 查询数据库所有表 和表的 注释 SELECT TABLE_NAME, TABLE_COMMENT from information_schema.tables WHERE TABLE_SCHEMA dam ORDER BY TABLE_NAME; 3 查询数据库 单…...

8月31日-9月1日 第六章 案例:MySQL主从复制与读写分离(面试重点,必记)

本章结构 案例概述 案例前置知识点 详细图示 1、什么是读写分离&#xff1f; 读写分离&#xff0c;基本的原理是让主数据库处理事务性增、改、删操作&#xff08;INSERT、UPDATE、DELETE&#xff09;&#xff0c;而从数据库处理SELECT查询操作。数据库复制被用来把事务性操作导…...

Oracle RAC 删除CRS集群配置失败

1.错误现象 [gridrac1~]$ /u01/app/11.2.0/grid/crs/install/rootcrs.pl -deconfig -force -verbose Cant locate Env.pm in INC (INC contains: /usr/local/lib64/perl5 /usr/local/share/perl5 /usr/lib64 /app/11.2.0/grid/crs/install) at /u01/app/11.2.0/grid/crs/insta…...

Kafka3.0.0版本——消费者(消费者总体工作流程图解)

一、消费者总体工作流程图解 角色划分&#xff1a;生产者、zookeeper、kafka集群、消费者、消费者组。如下图所示: 生产者发送消息给leader&#xff0c;followerr主动从leader同步数据&#xff0c;一个消费者可以消费某一个分区数据或者一个消费者可以消费多个分区数据。如下图…...

MacOS 为指定应用添加指定权限(浏览器无法使用摄像头、麦克风终极解决方案)

起因&#xff1a;需要浏览器在线做一些测评&#xff0c;但我的 Chrome 没有摄像头/麦克风权限&#xff0c;并且在设置中是没有手动添加按钮的。 我尝试了重装软件&#xff0c;更新系统&#xff08;上面的 13.5 就是这么来的&#xff0c;我本来都半年懒得更新系统了&#xff09…...

Mysql 流程控制

简介 我们可以在存储过程和函数中实现比较复杂的业务逻辑&#xff0c;但是需要对应的流程控制语句来控制&#xff0c;就像Java中分支和循环语句一样&#xff0c;在MySQL中也提供了对应的语句&#xff0c;接下来就详细的介绍下。 1.分支结构 1.1 IF语句 IF 表达式1 THEN 操作1…...

Java学习笔记之----I/O(输入/输出)二

【今日】 孩儿立志出乡关&#xff0c;学不成名誓不还。 文件输入/输出流 程序运行期间&#xff0c;大部分数据都在内存中进行操作&#xff0c;当程序结束或关闭时&#xff0c;这些数据将消失。如果需要将数据永久保存&#xff0c;可使用文件输入/输出流与指定的文件建立连接&a…...

2024字节跳动校招面试真题汇总及其解答(一)

1. 【算法题】重排链表 给定一个单链表 L 的头节点 head ,单链表 L 表示为: L0 → L1 → … → Ln - 1 → Ln请将其重新排列后变为: L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → … 不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。 示例 1: 输入:hea…...

【Nginx23】Nginx学习:响应头与Map变量操作

Nginx学习&#xff1a;响应头与Map变量操作 响应头是非常重要的内容&#xff0c;浏览器或者客户端有很多东西可能都是根据响应头来进行判断操作的&#xff0c;比如说最典型的 Content-Type &#xff0c;之前我们也演示过&#xff0c;直接设置一个空的 types 然后指定默认的数据…...

前端代理报错Error occured while trying to proxy to: localhost:端口

webpack配置进行前端代理时&#xff0c; 报错信息如下&#xff1a;(DEPTH_ZERO_SELF_SIGNED_CERT) 需设置&#xff1a;secure为false即可解决此报错 // webpack配置前端代理config["/test"]{target: https://xxxx.com,changeOrigin: true,secure: false // 这个配置…...

QT DAY6

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);socket new QTcpSocket(this);//如果连接服务器成功&#xff0c;该客户端就会发射一个connected的信号。//我们…...

Slint学习文档

Slint学习文档 Slint Learn如何学习本文档学习顺序标志说明 Slint With VSCodeSlint With Rust依赖&#x1f44e;定义宏 Slint与Rust分离1.添加编译依赖&#xff08;slint-build&#xff09;2.编写slint文件3.编写build.rs4.编写main.rs 普通组件主窗体Windowexample 文本Texte…...

【最新!七麦下载量analysis参数】逆向分析与Python实现加密算法

文章目录 1. 写在前面2. 请求分析3. 加密分析4. 算法实现 1. 写在前面 之前出过一个关于榜单analysis的分析&#xff0c;有兴趣的可以查看这篇文章&#xff1a;七麦榜单analysis加密分析 最近运营团队那边有同事找到我们&#xff0c;说工作中偶尔需要统计分析一下某APP在一些主…...

蓝桥杯练习题(3的倍数)

问题描述 小蓝对 3 的倍数很感兴趣。现在他手头有三个不同的数 a,b,c, 他想知道, 这三个数中是不是有两个数的和是 3 的倍数。 例如, 当 a3,b4,c6 时, 可以找到 a 和 c 的和是 3 的倍数。 例如, 当 a3,b4,c7 时, 没办法找到两个数的和是 3 的倍数。 输入格式 输入三行, 每行…...

安装Qe-7.2细节

编译 直接编译报错&#xff0c;发现要使用gpu加速。 检查linux的GPU: nvidia-smi lspci |grep -i nvidia module load cuda ./configure make all 安装curl mkdir build cd build …/configure --prefix/home/bin/local/curl make make install 加入路径&#xff1a; expor…...

3.运行项目

克隆项目 使用安装的git克隆vue2版本的若依项目&#xff0c;博主使用的版本是3.8.6. git clone https://gitee.com/y_project/RuoYi-Vue.git目录结构如下图所示&#xff0c;其中ruoyi-ui是前端的内容&#xff0c;其它均为后端的内容。 配置mysql数据库 在数据库里新建一个…...

【算法题】2651. 计算列车到站时间

题目&#xff1a; 给你一个正整数 arrivalTime 表示列车正点到站的时间&#xff08;单位&#xff1a;小时&#xff09;&#xff0c;另给你一个正整数 delayedTime 表示列车延误的小时数。 返回列车实际到站的时间。 注意&#xff0c;该问题中的时间采用 24 小时制。 示例 1…...

Mybatis传递实体对象只能直接获取,不能使用对象.属性方式获取

mybatis的自动识别参数功能很强大&#xff0c;pojo实体类可以直接写进mapper接口里面&#xff0c;不需要在mapper.xml文件中添加paramType,但是加了可以提高mybatis的效率 不加Param注解&#xff0c;取值的时候直接写属性 //这里是单参数&#xff0c;可以不加param&#xff01…...

flink 写入数据到 kafka 后,数据过一段时间自动删除

版本 flink 1.16.0kafka 2.3 流程描述&#xff1a; flink利用KafkaSource&#xff0c;读取kafka的数据&#xff0c;然后经过一系列的处理&#xff0c;通过KafkaSink&#xff0c;采用 EXACTLY_ONCE 的模式&#xff0c;将处理后的数据再写入到新的topic中。 问题描述&#xff1…...

golong基础相关操作--一

package main//go语言以包作为管理单位&#xff0c;每个文件必须先声明包 //程序必须有一个main包 // 导入包&#xff0c;必须要要使用 // 变量声明了&#xff0c;必须要使用 import ("fmt" )/* * 包内部的变量 */ var aa 3var ss "kkk"var bb truevar …...

【深度学习】基于卷积神经网络的铁路信号灯识别方法

基于卷积神经网络的铁路信号灯识别方法 摘 要&#xff1a;1 引言2 卷积神经网络模型2.1 卷积神经网络结构2.2.1 卷积层2.2.2 池化层2.2.3 全连接层 3 卷积神经网络算法实现3.1 数据集制作3.2 卷积神经网络的训练过程3.2.1 前向传播过程 4 实验5 结语 摘 要&#xff1a; 目前中…...

DR IP-SoC China 2023 Day演讲预告 | 龙智Perforce专家解析芯片开发中的数字资产管理

2023年9月6日&#xff08;周三&#xff09;&#xff0c;龙智即将亮相于上海举行的D&R IP-SoC China 2023 Day&#xff0c;呈现集成了Perforce与Atlassian产品的芯片开发解决方案&#xff0c;助力企业更好、更快地进行芯片开发。 D&R IP-SoC China 2023 Day 是中国首个…...

解决github连接不上的问题

改 hosts 我们在浏览器输入 GitHub 的网址时&#xff0c;会向 DNS 服务器发送一个请求&#xff0c;获取到 GitHub 网站所在的服务器 IP 地址&#xff0c;从而进行访问。 就像你是一名快递员&#xff0c;在送快递前要先找中间人询问收件人的地址。而 DNS 就是这个告诉你目标地址…...

# DevOps名词定义梳理

DevOps名词定义梳理 极限编程座右铭&#xff1a;如果它令你很受伤&#xff0c;那么就做更多的练习&#xff08;If it hurts, do it more often&#xff09; 经常人们会把这些名词用错&#xff1a; 构建&#xff1a;就是把源代码制成成品的过程&#xff0c;这个过程一般会有单元…...

Redis Cluster

文章目录 一、集群搭建1 节点规划2 集群启动 二、配置一致性1 基本分工2 更新规则 三、Sharding1 数据分片分片实现分片特点 2 slot迁移迁移原因迁移支持集群扩容迁移错误背景现象问题分析验证猜想 集群缩容 3. 请求路由client端server端migrating节点的读写importing节点的读写…...

Pandas常用指令

astype astype的作用是转换数据类型&#xff0c;astype是没办法直接在原df上进行修改的&#xff0c;只能通过赋值的形式将原有的df进行覆盖&#xff0c;即df df.astype(dtype) astype的基本语法 DataFrame.astype(dtype, copyTrue, errorsraise) dtype参数指定将数据类型转换…...