导数公式及求导法则
目录
基本初等函数的导数公式
求导法则
有理运算法则
复合函数求导法
隐函数求导法
反函数求导法
参数方程求导法
对数求导法
基本初等函数的导数公式
基本初等函数的导数公式包括:
- C'=0
- (x^n)'=nx^(n-1)
- (a^x)'=a^x*lna
- (e^x)'=e^x
- (loga(x))'=1/(xlna)
- (lnx)'=1/x
- (sinx)'=cosx
- (cosx)'=-sinx
以上是基本初等函数的导数公式,希望能对您有所帮助。
对于一些复杂的初等函数,其导数可能比较复杂,需要利用复合函数的求导法则、先取对数再求导等方法进行求解。以下是一些复杂初等函数的导数公式:
- y=tanx y'=1/cos^2x
- y=cotx y'=-1/sin^2x
对于更复杂的函数,需要利用复合函数的求导法则和先取对数再求导等方法进行求解,如计算函数y=lncos(ex)的导数时,需要令y=lnu,u=cos v,v=ex,再根据复合函数的求导法则进行求解。
求导法则
有理运算法则
求导法则包括:
- (u+v)'=u'+v'
- (uv)'=u'v+uv'
- (u/v)'=(u'v-uv')/v^2
- (u^n)'=nu^(n-1)u'
- (sin u)'=cos u u'
- (cos u)'=-sin u u'
- (e^u)'=e^u u'
- (a^u)'=a^u lna u'
- (log_a u)'=1/(u lna)
- (ln u)'=1/u
- (tan u)'=sec^2 u u'
- (cot u)'=-csc^2 u u'
- (sec u)'=sec u tan u u'
- (csc u)'=-csc u cot u u'
- (arcsin u)'=1/sqrt(1-u^2)
- (arccos u)'=-1/sqrt(1-u^2)
- (arctan u)'=1/(1+u^2)
- (arccot u)'=-1/(1+u^2)
复合函数求导法
复合函数求导法是一种求导方法,它适用于由两个或更多基本初等函数通过复合而成的函数。
假设我们有一个复合函数 y = f(u), u = g(x),我们可以使用链式法则来计算它的导数。链式法则告诉我们:
dy/dx = dy/du * du/dx
其中,dy/du 是函数 y = f(u) 对 u 的导数,du/dx 是函数 u = g(x) 对 x 的导数。
为了计算 dy/du 和 du/dx,我们需要知道函数 y = f(u) 和函数 u = g(x) 的具体形式。
例如,假设我们有以下复合函数:
y = sin(x^2)
我们可以将这个函数分解为两个基本初等函数:
y = sin(u), u = x^2
dy/du = cos(u), du/dx = 2x
dy/dx = dy/du * du/dx = cos(u) * 2x = cos(x^2) * 2x
隐函数求导法
对于一个隐函数,我们可以使用隐函数求导法来求解其导数。
假设我们有一个隐函数 F(x, y) = 0,其中y是x的函数,即y = f(x)。
我们可以对F(x, y)进行全微分,得到:
dF = F_x dx + F_y dy
其中,F_x表示F对x的偏导数,F_y表示F对y的偏导数。
由于F(x, y) = 0,所以dF = 0,即:
F_x dx + F_y dy = 0
移项得到:
dy / dx = -F_x / F_y
所以,隐函数y = f(x)的导数为:
f'(x) = dy / dx = -F_x / F_y
其中,F_x和F_y可以通过求偏导数得到。
反函数求导法
反函数求导法是一种求导方法,它适用于由一个函数通过反函数得到的函数。
假设我们有一个函数 y = f(x),它的反函数为 x = g(y)。
我们可以使用反函数求导法来计算 y = f(x) 的导数,即 dy/dx。
根据反函数的定义,我们有:
x = g(y)
dx/dy = g'(y)
由于 y = f(x),所以 x = g(y) = f^(-1)(y)。
因此,dx/dy = g'(y) = [f^(-1)(y)]'。
根据反函数的求导法则,我们有:
dy/dx = 1 / dx/dy
因此,dy/dx = 1 / [f^(-1)(y)]'。
所以,y = f(x) 的导数为:
dy/dx = 1 / [f^(-1)(y)]'
参数方程求导法
参数方程求导法是一种求导方法,它适用于由参数方程表示的函数。
假设我们有一个参数方程:
x = x(t)
y = y(t)
我们可以使用参数方程求导法来计算这个函数的导数 dy/dx。
根据参数方程的定义,我们有:
dx/dt = x'(t)
dy/dt = y'(t)
因此,dy/dx 可以表示为:
dy/dx = (dy/dt) / (dx/dt)
dy/dx = y'(t) / x'(t)
所以,参数方程 x = x(t), y = y(t) 所表示的函数的导数为 dy/dx = y'(t) / x'(t)。
对数求导法
对数求导法是一种求导方法,它适用于由指数函数和对数函数组成的函数。
假设我们有一个函数 y = f(x),其中 f(x) 是一个指数函数和对数函数的组合。
我们可以将 y = f(x) 两边取对数,得到 ln y = ln f(x)。
然后,我们可以对 ln f(x) 进行求导,得到 (ln f(x))' = (ln y)'。
根据链式法则,我们有 (ln f(x))' = f'(x) / f(x)。
因此,我们可以得到 dy/dx = y' = f'(x) / f(x)。
所以,对数求导法可以用来求解由指数函数和对数函数组成的函数的导数。
相关文章:

导数公式及求导法则
目录 基本初等函数的导数公式 求导法则 有理运算法则 复合函数求导法 隐函数求导法 反函数求导法 参数方程求导法 对数求导法 基本初等函数的导数公式 基本初等函数的导数公式包括: C0(x^n)nx^(n-1)(a^x)a^x*lna(e^x)e^x(loga(x))1/(xlna)(lnx)1/x(sinx)cos…...

SpringMVC系列(六)之JSON数据返回以及异常处理机制
目录 前言 一. JSON概述 二. JSON数据返回 1. 导入pom依赖 2. 添加配置文件(spring-mvc.xml) 3. ResponseBody注解使用 4. 效果展示 5. Jackson介绍 三. 全局异常处理 1. 为什么要全局异常处理 2. 异常处理思路 3. 异常处理方式一 4. 异常处…...

民安智库(北京第三方窗口测评)开展汽车消费者焦点小组座谈会调查
民安智库近日开展了一场汽车消费者焦点小组座谈会,旨在深入了解目标消费者对汽车功能的需求和消费习惯,为汽车企业提供有针对性的解决方案。 在焦点小组座谈会中,民安智库公司(第三方市容环境指数测评)邀请了一群具有…...

【CVPR2021】MVDNet论文阅读分析与总结
Challenge: 现有的目标检测器主要融合激光雷达和相机,通常提供丰富和冗余的视觉信息 利用最先进的成像雷达,其分辨率比RadarNet和LiRaNet中使用的分辨率要细得多,提出了一种有效的深度后期融合方法来结合雷达和激光雷达信号。 MV…...

IDEA指定Maven settings file文件未生效
背景:在自己电脑上配置的时候,由于公司项目和我自己的项目的Maven仓库不一致,我就在项目中指定了各自的Maven配置文件。但是我发现公司的项目私有仓库地址IDEA总是识别不到! 俩个配置文件分别是: /Users/sml/Mine/研发…...

swift UI 和UIKIT 如何配合使用
SwiftUI和UIKit可以在同一个iOS应用程序中配合使用。它们是两个不同的用户界面框架,各自有自己的优势和特点。在现实开发中,很多iOS应用程序并不是一开始就完全采用SwiftUI或UIKit,而是根据需要逐步引入SwiftUI或者使用两者共存。 SwiftUI的…...

c语言练习题55:IP 地址⽆效化
IP 地址⽆效化 题⽬描述: 给你⼀个有效的 IPv4 地址 address ,返回这个 IP 地址的⽆效化版本。 所谓⽆效化 IP 地址,其实就是⽤ "[.]" 代替了每个 "."。 • ⽰例 1: 输⼊:address "1.1.1.…...

nvidia-persistenced 常驻
本文地址:blog.lucien.ink/archives/542 发现每次执行 nvidia-smi 都特别慢,发现是需要 nvidia-persistenced 常驻才可以,这个并不会在安装完驱动之后自动配置,需要手动设置一个自启。 cat <<EOF >> /etc/systemd/sy…...

leetcode 42, 58, 14(*)
42. Trapping Rain Water 1.暴力解法(未通过) class Solution { public:int trap(vector<int>& height) {int n height.size();int res 0;for(int i0; i<n; i){int r_max 0, l_max 0;for(int j i; j<n; j)r_max max(r_max, heigh…...

SpringCloud-微服务CAP原则
接上文 SpringCloud-Config配置中心 到此部分即微服务的入门。 总的来说,数据存放的节点数越多,分区容忍性就越高,但要复制更新的次数就越多,一致性就越难保证。同时为了保证一致性,更新所有节点数据所需要的时间就…...

K8S:Yaml文件详解
目录 一.Yaml文件详解 1.Yaml文件格式 2.YAML 语法格式 二.Yaml文件编写及相关概念 1.查看 api 资源版本标签 2.yaml编写案例 (2)Deployment类型编写nginx服务 (3)k8s集群中的port介绍 (5)快速编写yaml文件 …...

机器人连续位姿同步插值轨迹规划—对数四元数、b样条曲线、c2连续位姿同步规划
简介:Smooth orientation planning is benefificial for the working performance and service life of industrial robots, keeping robots from violent impacts and shocks caused by discontinuous orientation planning. Nevertheless, the popular used quate…...

三维模型3DTile格式轻量化压缩的遇到常见问题与处理方法分析
三维模型3DTile格式轻量化压缩的遇到常见问题与处理方法分析 三维模型的轻量化压缩是一项技术挑战,特别是在处理复杂的3DTile格式时。下面列举了一些处理过程中可能遇到的常见问题以及相应的处理方法: 模型精度损失:在进行压缩处理时&#x…...

2023-简单点-开启防火墙后,ping显示请求超时;windows共享盘挂在不上
情景描述 树莓派 挂载 windows共享盘 之前一直可以,突然有一天不行了 ping xxxx不通了 一查,或许是服务器被同事开了防火墙,默认关闭了ping的回显 操作: 开启ping回显cmd ping通了,但是挂载还是不行, 显示 dmesg命…...

华为Java工程师面试题
常见问题: 什么是Java虚拟机(JVM)?它与现实中的计算机有什么不同?Java中的基本数据类型有哪些?它们的范围是什么?什么是引用类型?Java中的引用类型有哪些?什么是对象&am…...

大数据Flink(七十四):SQL的滑动窗口(HOP)
文章目录 SQL的滑动窗口(HOP) SQL的滑动窗口(HOP) 滑动窗口定义:滑动窗口也是将元素指定给固定长度的窗口。与滚动窗口功能一样,也有窗口大小的概念。不一样的地方在于,滑动窗口有另一个参数控制窗口计算的频率(滑动窗口滑动的步长)。因此,如果滑动的步长小于窗口大…...

Hystrix和Sentinel熔断降级设计理念
目录 1 基本介绍2 Hystrix信号量和线程池区别2.1 信号量模式2.2 线程池模式2.3 注意 3 Sentinel介绍 1 基本介绍 Sentinel 和 Hystrix 的原则是一致的: 当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源…...

获取Windows 10中的照片(旧版)下载
Windows 10中的新版照片应用,目前发现无法直接打开部分iOS设备上存储的照片。需要使用照片(旧版)才行。 但目前应用商店中无法直接搜索到照片(旧版),因此笔者提供如下链接,可以直接访问并呼出W…...

【Redis】Redis作为缓存
【Redis】Redis常见面试题(2) 文章目录 【Redis】Redis常见面试题(2)1. 缓存2. Redis作为缓存2.1 缓存雪崩2.2 缓存穿透2.3 缓存击穿2.4 缓存雪崩、缓存穿透、缓存击穿的区别2.5 缓存预热2.6 如何保证缓存和MySQL双写一致 【Redis…...

IDEA(2023)解决运行乱码问题
😇作者介绍:一个有梦想、有理想、有目标的,且渴望能够学有所成的追梦人。 🎆学习格言:不读书的人,思想就会停止。——狄德罗 ⛪️个人主页:进入博主主页 🗼专栏系列:无 🌼…...

零基础学前端(二)用简单案例去理解 HTML 、CSS 、JavaScript 概念
该篇适用于从零基础学习前端的小白 初学者不懂代码得含义也要坚持模仿逐行敲代码,以身体感悟带动头脑去理解新知识 一、导言 HTML,CSS,JavaScript 都是单独的语言;他们构成前端技术基础; (1)HTM…...

线性矩阵不等式(LMI)在控制理论中的应用
目录 (一)Matlab中的LMI处理工具包 (二)为什么LMI成为控制理论领域重要工具? (三)LMI在与Lyapunov不等式的关系 (1)线性矩阵不等式 (2)线性矩阵…...

如何在Python爬虫程序中使用HTTP代理?
在进行网络爬虫时,我们经常需要使用代理服务器来隐藏自己的真实IP地址,以避免被目标网站封禁或限制访问。本文将介绍如何将HTTP代理配置到Python爬虫程序中使用。 什么是HTTP代理? HTTP代理是一种网络代理,它充当客户端和服务器之…...

ARM架构指令集--专用指令
四、状态寄存器专用指令 CPSR寄存器-N Z C V T为0时 为ARM状态 F为0时 为开启FIQ状态 I为0时 为开启IRQ状态 图1 图2 一开始都是SVC指令,因为在操作系统启动的时候,在做一些初始化的操作,不允许被打断 图3 复位后CPSR寄存器为0xD3--…...

免费IP类api接口:含ip查询、ip应用场景查询、ip代理识别、IP行业查询...
免费IP类api接口:含ip查询、ip应用场景查询、ip代理识别… IP归属地-IPv6区县级:根据IP地址(IPv6版本)查询归属地信息,包含国家、省、市、区县和运营商等信息。IP归属地-IPv6城市级:根据IP地址(…...

Android Studio 中AGP ,Gradle ,JDK,SDK都是什么?
当进行 Android 开发时,以下是关键概念和工具的解释: Android Gradle Plugin: Android Gradle Plugin 是一个由 Google 提供的构建工具,它与 Gradle 配合使用来构建和打包 Android 应用。它提供了一组任务和功能,使开发…...

算法通关18关 | 回溯模板如何解决复原IP问题
18关的前几篇文章看过之后,对回溯的模板问题基本解题思路就知道了,就是固定的for循环问题,外层for循环控制横向,递归控制纵向,还要考虑撤销操作和元素是否能被重复利用问题,重复利用的情景较少,…...

Layui快速入门之第五节 导航
目录 一:基本概念 导航依赖element模块 API 渲染 属性 事件 二:水平导航 常规用法: 三:垂直导航 四:侧边垂直导航 五:导航主题 六:加入徽章等元素 七:面包屑导航 ps&a…...

使用分支——Git Checkout
这篇文章写的挺好; https://zhuanlan.zhihu.com/p/465954849 这里要注意,git 新的命令,通过 git switch 切换分支,虽然git checkout 分支 还可以用; 游离状态的HEADS 在我们已经见识到git checkout命令对于分支的三…...

【2023】数据挖掘课程设计:基于TF-IDF的文本分类
目录 一、课程设计题目 基于TF-IDF的文本分类 二、课程设计设置 1. 操作系统 2. IDE 3. python 4. 相关的库 三、课程设计目标 1. 掌握数据预处理的方法,对训练集数据进行预处理; 2. 掌握文本分类建模的方法,对语料库的文档进行建模…...