当前位置: 首页 > news >正文

Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果

Pytorch中张量矩阵乘法函数使用说明

  • 1 torch.mm() 函数
    • 1.1 torch.mm() 函数定义及参数
    • 1.2 torch.bmm() 官方示例
  • 2 torch.bmm() 函数
    • 2.1 torch.bmm() 函数定义及参数
    • 2.2 torch.bmm() 官方示例
  • 3 torch.matmul() 函数
    • 3.1 torch.matmul() 函数定义及参数
    • 3.2 torch.matmul() 规则约定
    • 3.3 torch.matmul() 官方示例
    • 3.4 高维数据实例解释
  • 参考博文及感谢

1 torch.mm() 函数

全称为matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是2维

1.1 torch.mm() 函数定义及参数

torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的矩阵
** mat2
* (Tensor) – – 第二个要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

1.2 torch.bmm() 官方示例

mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)
torch.mm(mat1, mat2)tensor([[ 0.4851,  0.5037, -0.3633],[-0.0760, -3.6705,  2.4784]])

2 torch.bmm() 函数

全称为batch matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是3维;

2.1 torch.bmm() 函数定义及参数

torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一批要相乘的矩阵
** mat2
* (Tensor) – – 第二批要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

2.2 torch.bmm() 官方示例

input = torch.randn(10, 3, 4)
mat2 = torch.randn(10, 4, 5)
res = torch.bmm(input, mat2)
res.size()torch.Size([10, 3, 5])

3 torch.matmul() 函数

可进行多维矩阵运算,根据不同输入维度进行广播机制然后运算,和点积类似,广播机制可参考之前博文torch.mul()函数。

3.1 torch.matmul() 函数定义及参数

torch.matmul(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的张量
** mat2
* (Tensor) – – 第二个要相乘的张量
支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

3.2 torch.matmul() 规则约定

(1)若两个都是1D(向量)的,则返回两个向量的点积;

(2)若两个都是2D(矩阵)的,则按照(矩阵相乘)规则返回2D;

(3)若input维度1D,other维度2D,则先将1D的维度扩充到2D(1D的维数前面+1),然后得到结果后再将此维度去掉,得到的与input的维度相同。即使作扩充(广播)处理,input的维度也要和other维度做对应关系;

(4)若input是2D,other是1D,则返回两者的点积结果;

(5)如果一个维度至少是1D,另外一个大于2D,则返回的是一个批矩阵乘法( a batched matrix multiply)

  • (a)若input是1D,other是大于2D的,则类似于规则(3);
  • (b)若other是1D,input是大于2D的,则类似于规则(4);
  • (c)若input和other都是3D的,则与torch.bmm()函数功能一样;
  • (d)如果input中某一维度满足可以广播(扩充),那么也是可以进行相乘操作的。例如 input(j,1,n,m)* other (k,m,p) = output(j,k,n,p)

matmul() 根据输入矩阵自动决定如何相乘。低维根据高维需求,合理广播。

3.3 torch.matmul() 官方示例

# vector x vector
tensor1 = torch.randn(3)
tensor2 = torch.randn(3)
torch.matmul(tensor1, tensor2).size()torch.Size([])
# matrix x vector
tensor1 = torch.randn(3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([3])
# batched matrix x broadcasted vector
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3])
# batched matrix x batched matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(10, 4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])
# batched matrix x broadcasted matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])

3.4 高维数据实例解释

直接看一个4维的二值例子,先看图(红虚线和实线是为了便于区分维度而添加),不懂再结合代码和结果分析,先做广播,然后对应矩阵进行乘积运算
在这里插入图片描述

代码如下:

import torch
import numpy as npnp.random.seed(2022)
a = np.random.randint(low=0, high=2, size=(2, 2, 3, 4))
a = torch.tensor(a)
b = np.random.randint(low=0, high=2, size=(2, 1, 4, 3))
b = torch.tensor(b)
c = torch.matmul(a, b)
# or
# c = a @ b
print(a)
print("=============================================")
print(b)
print("=============================================")
print(c.size())
print("=============================================")
print(c)

运行结果为:

tensor([[[[1, 0, 1, 0],[1, 1, 0, 1],[0, 0, 0, 0]],[[1, 1, 1, 1],[1, 1, 0, 0],[0, 1, 0, 1]]],[[[0, 0, 0, 1],[0, 0, 0, 1],[0, 1, 0, 0]],[[1, 1, 1, 1],[1, 1, 1, 1],[0, 0, 0, 0]]]], dtype=torch.int32)
=============================================
tensor([[[[0, 1, 0],[1, 1, 0],[0, 0, 0],[1, 1, 0]]],[[[0, 1, 0],[1, 1, 1],[1, 1, 1],[1, 0, 1]]]], dtype=torch.int32)
=============================================
torch.Size([2, 2, 3, 3])
=============================================
tensor([[[[0, 1, 0],[2, 3, 0],[0, 0, 0]],[[2, 3, 0],[1, 2, 0],[2, 2, 0]]],[[[1, 0, 1],[1, 0, 1],[1, 1, 1]],[[3, 3, 3],[3, 3, 3],[0, 0, 0]]]], dtype=torch.int32)

参考博文及感谢

部分内容参考以下链接,这里表示感谢 Thanks♪(・ω・)ノ
参考博文1 官方文档查询地址
https://pytorch.org/docs/stable/index.html
参考博文2 Pytorch矩阵乘法之torch.mul() 、 torch.mm() 及torch.matmul()的区别
https://blog.csdn.net/irober/article/details/113686080

相关文章:

Pytorch中张量矩阵乘法函数(mm, bmm, matmul)使用说明,含高维张量实例及运行结果

Pytorch中张量矩阵乘法函数使用说明 1 torch.mm() 函数1.1 torch.mm() 函数定义及参数1.2 torch.bmm() 官方示例 2 torch.bmm() 函数2.1 torch.bmm() 函数定义及参数2.2 torch.bmm() 官方示例 3 torch.matmul() 函数3.1 torch.matmul() 函数定义及参数3.2 torch.matmul() 规则约…...

如何在matlab绘图的标题中添加变量?变量的格式化字符串输出浅析

文章目录 matlab的格式化输出控制符字段宽度、精度和对齐方式的控制matlab的格式化输出总结 matlab的格式化输出控制符 Matlab在画图的时候,采用title函数可以增加标题,该函数的输入是一个字符串,有时候我们想在字符串中添加一些变量&#x…...

Spring MVC 八 - 内置过滤器

SpringMVC内置如下过滤器: Form DataForwarded HeadersShallow ETagCORS Form Data 浏览器可以通过HTTP GET或HTTP POST提交form data(表单数据),但是非浏览器客户端可以通过HTTP PUT、HTTP DELETE、HTTP PATCH提交表单数据。但…...

@Change监听事件与vue监听属性:watch的区别?

change 和 watch 是 Vue 中用于处理数据变化的两种不同方式。 1. change: - change 是一个事件监听器,用于监听特定DOM元素的变化事件,通常用于表单元素(如输入框、下拉框等)的值变化。 - 它在用户与表单元素交互并提交了变化时触…...

C++面试记录之中望软件

上次面试体验不好,记录了,这次同样记录一次体验不好的面试,中望软件…直接写了名字,因为真的很无语😓 记录一下我不知道的问题 忘记录音了😢 1. main函数之前做了什么? 我:实话我…...

多功能翻译工具:全球翻译、润色和摘要生成 | 开源日报 0914

openai-translator/openai-translator Stars: 18.1k License: AGPL-3.0 这个项目是一个多功能翻译工具,由 OpenAI 提供支持。 可以进行全球单词翻译、单词润色和摘要生成等操作提供三种模式:翻译、润色和摘要支持 55 种不同语言的互相转换支持流模式允…...

在 Vue.js 中,使用 watch 监听data变量如:对象属性/data变量

watch 监听对象属性 在 Vue.js 中,使用 watch 监听对象属性的变化时,应该将属性名作为字符串传递给 watch 选项。 示例如下: javascript watch: {addform.isCheck1: function(newValue) {console.log(newValue);var quantity this.addform…...

vue中预览xml并高亮显示

项目中有需要将接口返回的数据流显示出来&#xff0c;并高亮显示&#xff1b; 1.后端接口返回blob,类型为xml,如图 2.页面中使用pre code标签&#xff1a; <pre v-if"showXML"><code class"language-xml">{{xml}}</code></pre> …...

MFC中嵌入显示opencv窗口

在MFC窗体中建立一个Picture Control控件,用于显示opencv窗口 在属性中设置图片控件的资源ID为IDC_PIC1 主要的思路: 使用GetWindowRect可以获取图片控件的区域 使用cv::resizeWindow可以设置opencv窗口的大小,适合图片控件的大小 使用cvGetWindowHandle函数可以获取到ope…...

金鸣识别网页版:轻松实现表格识别的神器

来百度APP畅享高清图片 金鸣识别网页版是一款功能强大的在线识别工具&#xff0c;它可对图片或PDF中的表格文本内容进行识别&#xff0c;还支持各种证票的结构化识别。以下是以表格识别为例&#xff0c;对金鸣识别网页版的操作说明进行详细介绍&#xff1a; 首先&#xff0c;打…...

DasViewer可以设置打开指定文件吗?

答&#xff1a;会员可以。工具里面选择坐标转换&#xff0c;输入源数据&#xff0c;设置好源坐标和目标坐标以及路径。根据两张坐标系的性质选择转换方式。 DasViewer是由大势智慧自主研发的免费的实景三维模型浏览器,采用多细节层次模型逐步自适应加载技术,让用户在极低的电脑…...

uniapp微信小程序用户隐私保护指引弹窗组件

<template><view v-if"showPrivacy" :class"privacyClass"><view :class"contentClass"><view class"title">用户隐私保护指引</view><view class"des">感谢您选择使用我们的小程序&am…...

Java的反射应用(Method和Class)

记录&#xff1a;473 场景&#xff1a;使用java.lang.reflect.Method和java.lang.Class类&#xff0c;根据Java反射原理实现使用指定字符串类名和方法名称&#xff0c;调用对应对象和对应方法。 版本&#xff1a;JDK 1.8。 1.使用Java反射调用指定类的指定方法 (1)参数说明…...

Java之泛型系列--Class使用泛型的方法(有示例)

原文网址&#xff1a;Java之泛型系列--Class使用泛型的方法(有示例)_IT利刃出鞘的博客-CSDN博客 简介 本文用示例介绍Java在方法前加泛型的使用。 类类型的写法 对象所对应的类的泛型写法 Class classAClass<T> classAClass<?> classB Class与Class<?&g…...

【【无用的知识之串口学习】】

无用的知识之串口学习 USART串口协议 •通信的目的&#xff1a;将一个设备的数据传送到另一个设备&#xff0c;扩展硬件系统 •通信协议&#xff1a;制定通信的规则&#xff0c;通信双方按照协议规则进行数据收发 就是我们并不能在芯片上设计完全部的一下子完成所有的设计&am…...

9月13日上课内容 第三章 ELK日志分析系统

本章结构 ELK日志分析系统简介 ELK日志分析系统分为 Elasticsearch Logstash Kibana 日志处理步骤 1.将日志进行集中化管理 2.将日志格式化(Logstash) 并输出到Elasticsearch 3.对格式化后的数据进行索引和存储 (Elasticsearch) 4.前端数据的展示(Kibana) Elasticsearch介…...

不知道有用没用的Api

encodeURIComponent(https://www.baidu.com/?name啊啊啊) decodeURIComponent(https%3A%2F%2Fwww.baidu.com%2F%3Fname%3D%E5%95%8A%E5%95%8A%E5%95%8A) encodeURI(https://www.baidu.com/?name啊啊啊) decodeURI(https://www.baidu.com/?name%E5%95%8A%E5%95%8A%E5%95%8A) …...

(2023,LENS 视觉模型 LLM)迈向可见的语言模型:通过自然语言的镜头来看计算机视觉

Towards Language Models That Can See: Computer Vision Through the LENS of Natural Language 公众号&#xff1a;EDPJ&#xff08;添加 VX&#xff1a;CV_EDPJ 进交流群获取资料&#xff09; 目录 0. 摘要 1. 简介 2. 相关工作 2.1 大语言模型能力 2.2 解决视觉和…...

线段树上树剖再拿线段树维护:0914T4

cp 一种常见套路&#xff1a; 如果在线段树上进行一段区间修改&#xff0c;那么必然是一段右节点一段左节点 这个过程其实就是zkw的本质 下面都要用zkw来理解 考虑原题&#xff0c;有一棵不规则的线段树 类似zkw&#xff0c;在这类题目中&#xff0c;我们要先把开区间变成闭…...

互联网医院系统|互联网医院探索未来医疗的新蓝海

随着互联网技术的飞速发展&#xff0c;互联网医院应运而生&#xff0c;为人们带来全新的医疗体验。本文将深入探讨互联网医院的开发流程、系统优势以及未来发展方向&#xff0c;带您领略医疗领域的新蓝海。互联网医院的开发流程是一个结合技术、医疗和用户需求的复杂过程。首先…...

Acrel-2000系列监控系统在亚运手球比赛馆建设10kV供配电工程中的应用

安科瑞 崔丽洁 摘要:智能化配电监控系统是数字化和信息化时代应运而生的产物&#xff0c;已经被广泛应用于电网用户侧楼宇、体育场馆、科研设施、机场、交通、医院、电力和石化行业等诸多领域的高/低压变配电系统中。安科瑞自研的Acrel-2000系列监控系统可监控高压开关柜、低压…...

c++中遇到一个不了解的函数,查看能用的接口功能

在C中&#xff0c;您可以使用几种方法来查找函数的接口和使用方式。下面是一些常用的方法&#xff1a; 查阅官方文档&#xff1a;每个常见的C库都应该配有官方文档&#xff0c;其中包含所有可用函数和其接口的详细说明。您可以从官方网站或下载的文档中查找所需函数的接口和使用…...

windows linux子系统 docker无法启动

windows安装Linux子系统后&#xff0c;使用sudo service docker start启动后&#xff0c;再使用sudo service docker status查看docker状态&#xff0c;docker无法启动&#xff0c;使用sudo dockerd查看错误信息如下&#xff1a; failed to start daemon: Error initializing …...

【Redis】深入探索 Redis 的数据类型 —— 无序集合 Set

文章目录 一、Set 类型介绍二、Set 类型相关命令2.1 添加元素和检查成员2.2 移除元素2.3 集合运算求交集求并集求差集 2.4 Set 相关命令总结 三、Set 类型编码方式四、Set 使用场景 一、Set 类型介绍 Set&#xff08;集合&#xff09;是 Redis 数据库中的一种数据类型&#xf…...

可变参数JAVA

public class Main {public static void main(String[] args) {//方法形参的个数是可以变化的//格式&#xff1a;属性类型...名字System.out.println(getSum(1,2,3,4,5,6,7,8));}//通过键值对对象来遍历&#xff1b;public static int getSum(int a,int...args){//可变参数;int…...

Zabbix监控平台部署流程

Zabbix WEB、Zabbix Server、Zabbix Database放在一台服务器&#xff1b;&#xff08;192.168.10.12&#xff09;Zabbix Agent部署在被监控服务器上 &#xff08;192.168.10.11&#xff09;Zabbix Porxy 单独部署在一台服务器上&#xff08;被监控服务器少于500台可以不部署&am…...

重磅!文晔以38亿美元收购富昌电子 | 百能云芯

文晔微电子股份有限公司&#xff08;文晔科技&#xff09;于9月14日正式宣布已完成对富昌电子公司&#xff08;Future Electronics Inc.&#xff09;100%股权的收购&#xff0c;该交易以全现金方式完成&#xff0c;总交易价值高达38亿美元。 文晔科技的董事长兼首席执行官郑家强…...

Multimodel Image synthesis and editing:The generative AI Era

1.introduction 基于GAN和扩散模型&#xff0c;通过融入多模态引导来调节生成过程&#xff0c;从不同的多模态信号中合成图像&#xff1b;是为多模态图像合成和编辑使用预训练模型&#xff0c;通过在GAN潜在空间中进行反演&#xff0c;应用引导函数&#xff0c;或调整扩散模型…...

Linux——(第十章)进程管理

目录 一、概述 二、常用指令 1.ps查看当前系统进程状态 2.kill 终止进程 3.pstree 查看进程树 4.top 实时监控系统进程状态 5.netstat 监控网络状态 一、概述 &#xff08;1&#xff09;进程是正在执行的一个程序或命令&#xff0c;每一个进程都是一个运行的实体&#…...

【操作系统】聊聊协程为什么可以支撑高并发服务

在实际的业务开发中&#xff0c;比如针对一个业务流程&#xff0c;调用三方&#xff0c;然后存储数据&#xff0c;从oss上获取数据。其实都是进行的同步调用&#xff0c;说白了就是A完成之后&#xff0c;B在继续完成。如果整个过程中A、B、C 分别耗时100、300、200毫秒。那么整…...

校友会网站建设/大型seo公司

原文链接&#xff1a;https://blog.csdn.net/qq_43622216/article/details/128918566 2023年顶会、顶刊SNN相关论文目录说明AAAI2023NeurIPSIJCAI&#xff08;International Joint Conference on Artificial Intelligence&#xff09;IJCNN&#xff08; International Joint Co…...

西安网站开发公司怎么选/免费二级域名查询网站

原文连接 https://www.cnblogs.com/lentoo/p/9539137.html 博主写的很详细&#xff0c;需要的同学可以看原文连接&#xff0c;这里照搬过来感觉没什么意思&#xff01; 还有一篇很不错的文章 从买域名到使用pm2部署node.js项目全过程 https://www.jianshu.com/p/70ced477e5bd...

网络公司注册费用/seo 网站优化推广排名教程

四种类型 CISCO防火墙技术汇总高手进阶 PIX防火墙校园网配置实例转载于:https://blog.51cto.com/xaosky/14015...

网页设计怎么做版式/seo托管服务

计算机技术支持人员个人简历模板个人信息姓名&#xff1a;ijianli.com 性别&#xff1a;男 婚姻状况&#xff1a;未婚 出生日期&#xff1a;19**年1月 籍贯&#xff1a;广西xx 现居住&#xff1a;南宁毕业学校&#xff1a;XX 专业&#xff1a;XXXX 学历&#xff1…...

团购网站做摄影/百度seo 站长工具

wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm转载于:https://www.cnblogs.com/LD-linux/p/4863553.html...

变态传奇手游/常用的seo工具

虽然Windows 10日臻完善和普及&#xff0c;可依然有很多用户在使用Windows 7&#xff0c;微软也在听取用户意见&#xff0c;前几天微软宣布DirectX 12下放到Windows 7&#xff0c;而微软也在准备Windows 7的新镜像。著名爆料WalkingCat在Twitter上爆料了微软新的Windows 7镜像的…...