【毕设选题】flink大数据淘宝用户行为数据实时分析与可视化
文章目录
- 0 前言
- 1、环境准备
- 1.1 flink 下载相关 jar 包
- 1.2 生成 kafka 数据
- 1.3 开发前的三个小 tip
- 2、flink-sql 客户端编写运行 sql
- 2.1 创建 kafka 数据源表
- 2.2 指标统计:每小时成交量
- 2.2.1 创建 es 结果表, 存放每小时的成交量
- 2.2.2 执行 sql ,统计每小时的成交量
- 2.3 指标统计:每10分钟累计独立用户数
- 2.3.1 创建 es 结果表,存放每10分钟累计独立用户数
- 2.3.2 创建视图
- 2.3.3 执行 sql ,统计每10分钟的累计独立用户数
- 2.4 指标统计:商品类目销量排行
- 2.4.1 创建商品类目维表
- 2.4.1 创建 es 结果表,存放商品类目排行表
- 2.4.2 创建视图
- 2.4.3 执行 sql , 统计商品类目销量排行
- 3、最终效果与体验心得
- 3.1 最终效果
- 3.2 体验心得
- 3.2.1 执行
- 3.2.2 存储
- 4 最后
0 前言
🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。
为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是
🚩 flink大数据淘宝用户行为数据实时分析与可视化
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:4分
1、环境准备
1.1 flink 下载相关 jar 包
flink-sql 连接外部系统时,需要依赖特定的 jar 包,所以需要事先把这些 jar 包准备好。说明与下载入口
本项目使用到了以下的 jar 包 ,下载后直接放在了 flink/lib 里面。
需要注意的是 flink-sql 执行时,是转化为 flink-job 提交到集群执行的,所以 flink 集群的每一台机器都要添加以下的 jar 包。
外部 | 版本 | jar |
---|---|---|
kafka | 4.1 | flink-sql-connector-kafka_2.11-1.10.2.jar flink-json-1.10.2-sql-jar.jar |
elasticsearch | 7.6 | flink-sql-connector-elasticsearch7_2.11-1.10.2.jar |
mysql | 5.7 | flink-jdbc_2.11-1.10.2.jar mysql-connector-java-8.0.11.jar |
1.2 生成 kafka 数据
用户行为数据来源: 阿里云天池公开数据集
网盘:https://pan.baidu.com/s/1wDVQpRV7giIlLJJgRZAInQ 提取码:gja5
商品类目纬度数据来源: category.sql
数据生成器:datagen.py
有了数据文件之后,使用 python 读取文件数据,然后并发写入到 kafka。
修改生成器中的 kafka 地址配置,然后运行 以下命令,开始不断往 kafka 写数据
# 5000 并发
nohup python3 datagen.py 5000 &
1.3 开发前的三个小 tip
-
生成器往 kafka 写数据,会自动创建主题,无需事先创建
-
flink 往 elasticsearch 写数据,会自动创建索引,无需事先创建
-
Kibana 使用索引模式从 Elasticsearch 索引中检索数据,以实现诸如可视化等功能。
使用的逻辑为:创建索引模式 》Discover (发现) 查看索引数据 》visualize(可视化)创建可视化图表》dashboards(仪表板)创建大屏,即汇总多个可视化的图表
2、flink-sql 客户端编写运行 sql
# 进入 flink-sql 客户端, 需要指定刚刚下载的 jar 包目录
./bin/sql-client.sh embedded -l lib
2.1 创建 kafka 数据源表
-- 创建 kafka 表, 读取 kafka 数据
CREATE TABLE user_behavior (user_id BIGINT,item_id BIGINT,category_id BIGINT,behavior STRING,ts TIMESTAMP(3),proctime as PROCTIME(),WATERMARK FOR ts as ts - INTERVAL '5' SECOND
) WITH ('connector.type' = 'kafka', 'connector.version' = 'universal', 'connector.topic' = 'user_behavior', 'connector.startup-mode' = 'earliest-offset', 'connector.properties.zookeeper.connect' = '172.16.122.24:2181', 'connector.properties.bootstrap.servers' = '172.16.122.17:9092', 'format.type' = 'json'
);
SELECT * FROM user_behavior;
2.2 指标统计:每小时成交量
2.2.1 创建 es 结果表, 存放每小时的成交量
CREATE TABLE buy_cnt_per_hour (hour_of_day BIGINT,buy_cnt BIGINT
) WITH ('connector.type' = 'elasticsearch', 'connector.version' = '7', 'connector.hosts' = 'http://172.16.122.13:9200', 'connector.index' = 'buy_cnt_per_hour','connector.document-type' = 'user_behavior','connector.bulk-flush.max-actions' = '1','update-mode' = 'append','format.type' = 'json'
);
2.2.2 执行 sql ,统计每小时的成交量
INSERT INTO buy_cnt_per_hour
SELECT HOUR(TUMBLE_START(ts, INTERVAL '1' HOUR)), COUNT(*)
FROM user_behavior
WHERE behavior = 'buy'
GROUP BY TUMBLE(ts, INTERVAL '1' HOUR);
2.3 指标统计:每10分钟累计独立用户数
2.3.1 创建 es 结果表,存放每10分钟累计独立用户数
CREATE TABLE cumulative_uv (time_str STRING,uv BIGINT
) WITH ('connector.type' = 'elasticsearch', 'connector.version' = '7', 'connector.hosts' = 'http://172.16.122.13:9200', 'connector.index' = 'cumulative_uv','connector.document-type' = 'user_behavior', 'update-mode' = 'upsert','format.type' = 'json'
);
2.3.2 创建视图
CREATE VIEW uv_per_10min AS
SELECTMAX(SUBSTR(DATE_FORMAT(ts, 'HH:mm'),1,4) || '0') OVER w AS time_str,COUNT(DISTINCT user_id) OVER w AS uv
FROM user_behavior
WINDOW w AS (ORDER BY proctime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW);
2.3.3 执行 sql ,统计每10分钟的累计独立用户数
INSERT INTO cumulative_uv
SELECT time_str, MAX(uv)
FROM uv_per_10min
GROUP BY time_str;
2.4 指标统计:商品类目销量排行
2.4.1 创建商品类目维表
先在 mysql 创建一张商品类目的维表,然后配置 flink 读取 mysql。
CREATE TABLE category_dim (sub_category_id BIGINT,parent_category_name STRING
) WITH ('connector.type' = 'jdbc','connector.url' = 'jdbc:mysql://172.16.122.25:3306/flink','connector.table' = 'category','connector.driver' = 'com.mysql.jdbc.Driver','connector.username' = 'root','connector.password' = 'root','connector.lookup.cache.max-rows' = '5000','connector.lookup.cache.ttl' = '10min'
);
2.4.1 创建 es 结果表,存放商品类目排行表
CREATE TABLE top_category (category_name STRING,buy_cnt BIGINT
) WITH ('connector.type' = 'elasticsearch', 'connector.version' = '7', 'connector.hosts' = 'http://172.16.122.13:9200', 'connector.index' = 'top_category','connector.document-type' = 'user_behavior','update-mode' = 'upsert','format.type' = 'json'
);
2.4.2 创建视图
CREATE VIEW rich_user_behavior AS
SELECT U.user_id, U.item_id, U.behavior, C.parent_category_name as category_name
FROM user_behavior AS U LEFT JOIN category_dim FOR SYSTEM_TIME AS OF U.proctime AS C
ON U.category_id = C.sub_category_id;
2.4.3 执行 sql , 统计商品类目销量排行
INSERT INTO top_category
SELECT category_name, COUNT(*) buy_cnt
FROM rich_user_behavior
WHERE behavior = 'buy'
GROUP BY category_name;
3、最终效果与体验心得
3.1 最终效果
整个开发过程,只用到了 flink-sql ,无需写 java 或者其它代码,就完成了这样一个实时报表。
3.2 体验心得
3.2.1 执行
-
flink-sql 的 ddl 语句不会触发 flink-job , 同时创建的表、视图仅在会话级别有效。
-
对于连接表的 insert、select 等操作,则会触发相应的流 job, 并自动提交到 flink 集群,无限地运行下去,直到主动取消或者 job 报错。
-
flink-sql 客户端关闭后,对于已经提交到 flink 集群的 job 不会有任何影响。
本次开发,执行了 3 个 insert , 因此打开 flink 集群面板,可以看到有 3 个无限的流 job 。即使 kafka 数据全部写入完毕,关闭 flink-sql 客户端,这个 3 个 job 都不会停止。
3.2.2 存储
-
flnik 本身不存储业务数据,只作为流批一体的引擎存在,所以主要的用法为读取外部系统的数据,处理后,再写到外部系统。
-
flink 本身的元数据,包括表、函数等,默认情况下只是存放在内存里面,所以仅会话级别有效。但是,似乎可以存储到 Hive Metastore 中,关于这一点就留到以后再实践。
4 最后
相关文章:
【毕设选题】flink大数据淘宝用户行为数据实时分析与可视化
文章目录 0 前言1、环境准备1.1 flink 下载相关 jar 包1.2 生成 kafka 数据1.3 开发前的三个小 tip 2、flink-sql 客户端编写运行 sql2.1 创建 kafka 数据源表2.2 指标统计:每小时成交量2.2.1 创建 es 结果表, 存放每小时的成交量2.2.2 执行 sql &#x…...
机器学习练习-决策树
机器学习练习-决策树 代码更新地址:https://github.com/fengdu78/WZU-machine-learning-course 代码修改并注释:黄海广,haiguang2000wzu.edu.cn 1.分类决策树模型是表示基于特征对实例进行分类的树形结构。决策树可以转换成一个if…...
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测
分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测 目录 分类预测 | Matlab实现基于LFDA-SVM局部费歇尔判别数据降维结合支持向量机的多输入分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于局部费歇尔判别数据降维的L…...
Say0l的安全开发-代理扫描工具-Sayo-proxyscan【红队工具】
写在前面 终于终于,安全开发也练习一年半了,有时间完善一下项目,写写中间踩过的坑。 安全开发的系列全部都会上传至github,欢迎使用和star。 工具链接地址 https://github.com/SAY0l/Sayo-proxyscan 工具简介 SOCKS4/SOCKS4…...
使用FFmpeg+ubuntu系统转化flac无损音频为mp3
功能需求如上题,我们来具体的操作一下: 1.先在ubuntu上面安装FFmpeg:sudo apt install ffmpeg 2.进入有flac音频文件的目录使用下述命令: ffmpeg -i test.FLAC -c:a libmp3lame -q:a 2 output.mp3 3.如果没有什么意外的话,你就能看到你的文件夹里面已经有转化好的mp3文件了 批…...
I/O多路复用三种实现
一.select 实现 (1)select流程 基本流程是: 1. 先构造一张有关文件描述符的表; fd_set readfds 2. 清空表 FD_ZERO() 3. 将你关心的文件描述符加入到这…...
DataInputStream数据读取 Vs ByteBuffer数据读取的巨大性能差距
背景: 今天在查找一个序列化和反序列化相关的问题时,意外发现使用DataInputStream读取和ByteBuffer读取之间性能相差巨大,本文就来记录下这两者在读取整数类型时的性能差异,以便在平时使用的过程中引起注意 DataInputStream数据…...
org.apache.flink.table.api.TableException: Sink does not exists
FlinkSQL_1.12_用DDL实现Kafka到MySQL的数据传输_实现按照条件进行过滤写入MySQL_flink从kafka拉取数据并过滤数据写入mysql_旧城里的阳光的博客-CSDN博客 参考这篇文章,写了kafka到mysql的代码例子,因为自己改了表结构,运行下面代码&#x…...
【多线程】CAS 详解
CAS 详解 一. 什么是 CAS二. CAS 的应用1. 实现原子类2. 实现自旋锁 三. CAS 的 ABA 问题四. 相关面试题 一. 什么是 CAS CAS: 全称Compare and swap,字面意思:”比较并交换“一个 CAS 涉及到以下操作: 我们假设内存中的原数据 V,旧的预期值…...
卷积神经网络实现咖啡豆分类 - P7
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 目录 环境步骤环境设置包引用全局设备对象 数据准备查看图像的信息制作数据集 模型设…...
C++之默认与自定义构造函数问题(二百一十七)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...
Docker从认识到实践再到底层原理(五)|Docker镜像
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...
【Flowable】任务监听器(五)
前言 之前有需要使用到Flowable,鉴于网上的资料不是很多也不是很全也是捣鼓了半天,因此争取能在这里简单分享一下经验,帮助有需要的朋友,也非常欢迎大家指出不足的地方。 一、监听器 在Flowable中,我们可以使用监听…...
spring-kafka中ContainerProperties.AckMode详解
近期,我们线上遇到了一个性能问题,几乎快引起线上故障,后来仅仅是修改了一行代码,性能就提升了几十倍。一行代码几十倍,数据听起来很夸张,不过这是真实的数据,线上错误的配置的确有可能导致性能…...
【rpc】Dubbo和Zookeeper结合使用,它们的作用与联系(通俗易懂,一文理解)
目录 Dubbo是什么? 把系统模块变成分布式,有哪些好处,本来能在一台机子上运行,为什么还要远程调用 Zookeeper是什么? 它们进行配合使用时,之间的关系 服务注册 服务发现 动态地址管理 Dubbo是…...
ChatGPT的未来
随着人工智能的快速发展,ChatGPT作为一种自然语言生成模型,在各个领域都展现出了巨大的潜力。它不仅可以用于日常对话、创意助手和知识查询,还可以应用于教育、医疗、商业等各个领域,为人们带来更多便利和创新。 在教育领域&#…...
Pytorch模型转ONNX部署
开始以为会很困难,但是其实非常方便,下边分两步走:1. pytorch模型转onnx;2. 使用onnx进行inference 0. 准备工作 0.1 安装onnx 安装onnx和onnxruntime,onnx貌似是个环境。。倒是没有直接使用,onnxruntim…...
k8s优雅停服
在应用程序的整个生命周期中,正在运行的 pod 会由于多种原因而终止。在某些情况下,Kubernetes 会因用户输入(例如更新或删除 Deployment 时)而终止 pod。在其他情况下,Kubernetes 需要释放给定节点上的资源时会终止 po…...
面试题五:computed的使用
题记 大部分的工作中使用computed的频次很低的,所以今天拿出来一文对于computed进行详细的介绍,因为Vue的灵魂之一就是computed。 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护…...
完美的分布式监控系统 Prometheus与优雅的开源可视化平台 Grafana
1、之间的关系 prometheus与grafana之间是相辅相成的关系。简而言之Grafana作为可视化的平台,平台的数据从Prometheus中取到来进行仪表盘的展示。而Prometheus这源源不断的给Grafana提供数据的支持。 Prometheus是一个开源的系统监控和报警系统,能够监…...
黑马JVM总结(九)
(1)StringTable_调优1 我们知道StringTable底层是一个哈希表,哈希表的性能是跟它的大小相关的,如果哈希表这个桶的个数比较多,元素相对分散,哈希碰撞的几率就会减少,查找的速度较快,…...
如何使用 RunwayML 进行创意 AI 创作
标题:如何使用 RunwayML 进行创意 AI 创作 介绍 RunwayML 是一个基于浏览器的人工智能创作工具,可让用户使用各种 AI 功能来生成图像、视频、音乐、文字和其他创意内容。RunwayML 的功能包括: * 图像生成:使用生成式对抗网络 (…...
【css】能被4整除 css :class,判断一个数能否被另外一个数整除,余数
判断一个数能否被另外一个数整除 一个数能被4整除的表达式可以表示为:num%40,其中,num为待判断的数,% 为取模运算符,为等于运算符。这个表达式的意思是,如果num除以4的余数为0,则返回true&…...
ChatGPT与日本首相交流核废水事件-精准Prompt...
了解更多请点击:ChatGPT与日本首相交流核废水事件-精准Prompt...https://mp.weixin.qq.com/s?__bizMzg2NDY3NjY5NA&mid2247490070&idx1&snebdc608acd419bb3e71ca46acee04890&chksmce64e42ff9136d39743d16059e2c9509cc799a7b15e8f4d4f71caa25968554…...
关于 firefox 不能访问 http 的解决
情景: 我在虚拟机 192.168.x.111 上配置了 DNS 服务器,在 kali 上设置 192.168.x.111 为 DNS 服务器后,使用 firefox 地址栏搜索域名 www.xxx.com ,访问在 192.168.x.111 搭建的网站,本来经 192.168.x.111 DNS 服务器解…...
68、Spring Data JPA 的 方法名关键字查询
★ 方法名关键字查询(全自动) (1)继承 CrudRepository 接口 的 DAO 组件可按特定规则来定义查询方法,只要这些查询方法的 方法名 遵守特定的规则,Spring Data 将会自动为这些方法生成 查询语句、提供 方法…...
Brother CNC联网数采集和远程控制
兄弟CNC IP地址设定参考:https://www.sohu.com/a/544461221_121353733没有能力写代码的兄弟可以提前下载好网络调试助手NetAssist,这样就不用写代码来测试连接CNC了。 以上是网络调试助手抓取CNC的产出命令,结果有多个行string需要自行解析&…...
Jenkins 编译 Maven 项目提示错误 version 17
在最近使用集成工具的时候,对项目进行编译提示下面的错误信息: maven-compiler-plugin:3.11.0:compile (default-compile) on project mq-service: Fatal error compiling: error: release version 17 not supported 问题和解决 上面提示的错误信息原…...
数据结构——排序算法——堆排序
堆排序过程如下: 1.用数列构建出一个大顶堆,取出堆顶的数字; 2.调整剩余的数字,构建出新的大顶堆,再次取出堆顶的数字; 3.循环往复,完成整个排序。 构建大顶堆有两种方式: 1.从 0 开…...
【Spring事务底层实现原理】
Transactional注解 Spring使用了TransactionInterceptor拦截器,该拦截器主要负责事务的管理,包括开启、提交、回滚等操作。当在方法上添加Transactional注解时,Spring会在AOP框架中对该方法进行拦截,TransactionInterceptor会在该…...
服务器架构做网站/舆情分析报告范文
题目链接 最大权闭合图模型,参考 具体做法是从源点向每个实验连一条流量为这个实验的报酬的边,从每个实验向这个实验需要的所有器材各连一条流量为\(INF\)的边,再从每个器材向汇点连一条流量为这个器材的费用的边。 然后跑出最小割࿰…...
网站的虚拟人怎么做的/百度seo如何快速排名
2.10 CS和IP(1)CS和IP是8086CPU中两个最关键的寄存器,它们指示了CPU当前要读取指令的地址。CS为代码段寄存器,IP为指令指针寄存器,从名称上我们可以看出它们和指令的关系。在8086PC机中,任意时刻,设CS中的内容为&#…...
wordpress同步qq空间/宁波seo博客
中国人血白蛋白行业发展分析与投资战略研究报告2022-2028年 详情内容请咨询鸿晟信合研究院! 【全新修订】:2022年2月 【撰写单位】:鸿晟信合研究研究 【报告目录】 第1章:人血白蛋白行业界定及数据统计标准说明 1.1 人血白蛋白的…...
做电商有哪些网站有哪些/网上哪里接app推广单
[20161002]impdp导入很慢.txt--如果在导入前表以及对应索引已经存在,impdp导入(使用参数TABLE_EXISTS_ACTIONappend)要维护索引,这样在导入时产生大量日志,比--没有表存在的情况下慢很多,通过例子来说明.1.环境:SCOTTtest01p> ver1PORT_STRING VERSION …...
东莞网站域名注册/seo和sem是什么意思啊
cocos2d-x引擎在内部实现了一个庞大的主循环,每帧之间更新界面,如果耗时的操作放到了主线程中,游戏的界面就会卡,这是不能容忍的,游戏最基本的条件就是流畅性,这就是为什么游戏开发选择C的原因。另外现在双…...
湖南长沙网站建设/山东潍坊疫情最新消息
构建高性能的web站点需要考虑很多方面,我们在这了解一下其中一项---------数据库扩展,希望能够让没有接触过这方面知识的朋友对数据库扩展有个认识吧。 随着用户数量的不断增加,数据库将面临着巨大的增删改查,即便我们将sql语句优…...