当前位置: 首页 > news >正文

第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导

第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导

本篇博客精简自本人关于曲面积分的博客:详情见:曲面积分(Surface Integral)

曲面参数化(曲面上的每个点都使用起点为原点、终点为该曲面上的点的向量表示)
x o y xoy xoy平面中区域 R R R(其实是曲面在 x o y xoy xoy平面上的投影)上方的曲面,其参数表示式 r ( u , v ) = f ( u , v ) i + g ( u , v ) j + h ( u , v ) k \bold{r}(u,v)=f(u,v)\bold{i}+g(u,v)\bold{j}+h(u,v)\bold{k} r(u,v)=f(u,v)i+g(u,v)j+h(u,v)k

P P P处的沿 u u u轴和 v v v轴的切向量分别是:
r u = ∂ r ( u , v ) ∂ u = ∂ f ( u , v ) ∂ u i + ∂ g ( u , v ) ∂ u j + ∂ h ( u , v ) ∂ u k \bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\frac{\partial f(u,v)}{\partial u}\bold{i}+\frac{\partial g(u,v)}{\partial u}\bold{j}+\frac{\partial h(u,v)}{\partial u}\bold{k} ru=ur(u,v)=uf(u,v)i+ug(u,v)j+uh(u,v)k
r v = ∂ r ( u , v ) ∂ v = ∂ f ( u , v ) ∂ v i + ∂ g ( u , v ) ∂ v j + ∂ h ( u , v ) ∂ v k \bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\frac{\partial f(u,v)}{\partial v}\bold{i}+\frac{\partial g(u,v)}{\partial v}\bold{j}+\frac{\partial h(u,v)}{\partial v}\bold{k} rv=vr(u,v)=vf(u,v)i+vg(u,v)j+vh(u,v)k

点P处的沿 u u u轴和 v v v轴的切向量叉乘的数值大小为两个切向量组成四边形的面积,使用该面积替代下方的曲面微元(以直平面替代曲面)
S 1 = ∣ r u × r v ∣ S_1=|\bold{r_u}×\bold{r_v}| S1=ru×rv

r u 、 r v r_u、r_v rurv进行缩放调整其大小基本和下方曲面边长大小差不多, Δ u r u 、 Δ v r v \Delta ur_u、\Delta vr_v ΔuruΔvrv,现在直平面面积变为了
S = ∣ Δ u r u × Δ v r v ∣ = ∣ r u × r v ∣ Δ u Δ v ≈ Δ σ x y S=|\Delta ur_u×\Delta vr_v|=|\bold{r_u}×\bold{r_v}|\Delta u\Delta v\approx \Delta\sigma_{xy} S=∣Δuru×Δvrv=ru×rv∣ΔuΔvΔσxy

曲面微元 d σ d\sigma dσ d u d v dudv dudv之间的关系
d σ = ∣ r u × r v ∣ d u d v d\sigma=|\bold{r_u}×\bold{r_v}|dudv dσ=ru×rvdudv
若曲面的面密度不是常数,即被积函数不是常数,则曲面S质量为:
∬ S G ( x , y , z ) d σ = ∬ R G ( f ( u , v ) , g ( u , v ) , h ( u , v ) ) ∣ r u × r v ∣ d u d v \iint\limits_{S}G(x,y,z)d\sigma=\iint\limits_{R}G(f(u,v),g(u,v),h(u,v))|\bold{r_u}×\bold{r_v}|dudv SG(x,y,z)dσ=RG(f(u,v),g(u,v),h(u,v))ru×rvdudv


若我们取 x = u 、 y = v 、 z = f ( x , y ) x=u、y=v、z=f(x,y) x=uy=vz=f(x,y),其中 z = f ( x , y ) z=f(x,y) z=f(x,y) x o y xoy xoy平面中区域 R R R上的曲面表达式
参数化后曲面的表示式
r ( u , v ) = u i + v j + f ( u , v ) k \bold{r}(u,v)=u\bold{i}+v\bold{j}+f(u,v)\bold{k} r(u,v)=ui+vj+f(u,v)k
点P处的沿 u u u轴和 v v v轴的切向量分别是:
r u = ∂ r ( u , v ) ∂ u = i + f u ′ ( u , v ) k \bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\bold{i}+f'_u(u,v)\bold{k} ru=ur(u,v)=i+fu(u,v)k
r v = ∂ r ( u , v ) ∂ v = j + f v ′ ( u , v ) k \bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\bold{j}+f'_v(u,v)\bold{k} rv=vr(u,v)=j+fv(u,v)k
r u × r v = ∣ i j k 1 0 f u ′ 0 1 f v ′ ∣ = − f u ′ i − f v ′ j + k \bold{r_u}×\bold{r_v}=\left | \begin{matrix} \bold{i}&\bold{j}&\bold{k}\\ 1 & 0 & f'_u \\ 0 & 1 & f'_v \\ \end{matrix} \right | =-f'_u\bold{i}-f'_v\bold{j}+\bold{k} ru×rv= i10j01kfufv =fuifvj+k
∣ r u × r v ∣ = ( − f u ′ ) 2 + ( − f v ′ ) 2 + 1 2 = f u ′ 2 + f v ′ 2 + 1 |\bold{r_u}×\bold{r_v}|=\sqrt{(-f'_u)^2+(-f'_v)^2+1^2}=\sqrt{f'^2_u+f'^2_v+1} ru×rv=(fu)2+(fv)2+12 =fu′2+fv′2+1
∣ r u × r v ∣ d u d v = ( − f u ′ ) 2 + ( − f v ′ ) 2 + 1 2 d u d v = f u ′ 2 + f v ′ 2 + 1 d u d v |\bold{r_u}×\bold{r_v}|dudv=\sqrt{(-f'_u)^2+(-f'_v)^2+1^2}dudv=\sqrt{f'^2_u+f'^2_v+1}dudv ru×rvdudv=(fu)2+(fv)2+12 dudv=fu′2+fv′2+1 dudv
将参数化后的参数替换为原参 x = u 、 y = v x=u、y=v x=uy=v
曲面微元 d σ d\sigma dσ与其投影面积微元 d x d y dxdy dxdy之间的关系
d σ = f x ′ 2 + f y ′ 2 + 1 d x d y d\sigma=\sqrt{f'^2_x+f'^2_y+1}dxdy dσ=fx′2+fy′2+1 dxdy
区域R(曲面投影)上方曲面的面积为:
∬ R d σ = ∬ R f x ′ 2 + f y ′ 2 + 1 d x d y \iint\limits_{R}d\sigma=\iint\limits_{R}\sqrt{f'^2_x+f'^2_y+1}dxdy Rdσ=Rfx′2+fy′2+1 dxdy
曲面显式表达式: z = f ( x , y ) z=f(x,y) z=f(x,y),曲面隐式表达式: G ( x , y , z ) = z − f ( x , y ) G(x,y,z)=z-f(x,y) G(x,y,z)=zf(x,y)
G x ′ ( x , y , z ) = − f x ′ ( x , y ) G y ′ ( x , y , z ) = − f y ′ ( x , y ) G z ′ ( x , y , z ) = 1 G'_x(x,y,z)=-f'_x(x,y)\\ ~\\ G'_y(x,y,z)=-f'_y(x,y)\\ ~\\ G'_z(x,y,z)=1 Gx(x,y,z)=fx(x,y) Gy(x,y,z)=fy(x,y) Gz(x,y,z)=1
若曲面的面密度不是常数,即被积函数不是常数,则曲面S质量为:
∬ S G ( x , y , z ) d σ = ∬ R G ( x , y , f ( x , y ) ) f x ′ 2 + f y ′ 2 + 1 d x d y \iint\limits_{S}G(x,y,z)d\sigma=\iint\limits_{R}G(x,y,f(x,y))\sqrt{f'^2_x+f'^2_y+1}dxdy SG(x,y,z)dσ=RG(x,y,f(x,y))fx′2+fy′2+1 dxdy

相关文章:

第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导

第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导 本篇博客精简自本人关于曲面积分的博客:详情见:曲面积分(Surface Integral) 曲面参数化(曲面上的每个点都使用起点为原点、终点为该曲面上的点的向量表示&#x…...

vue学习之Font Awesome图标

官方文档 https://fontawesome.com.cn/v5 Font Awesome 安装 cnpm install font-awesome/src/main.js 引入css import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue;...

mysql内连接与外连接详解

内连接与外连接 内连接外连接 在数据库中,连接操作是一种把两个或者多个表的记录组合在一起的操作,常用的有内连接(Inner Join)、外连接(Outer Join)等。 内连接 内连接(Inner Join&#xff0…...

在Mujoco环境下详细实现PPO算法应用于Humanoid-v2的完整教程

第一部分:介绍 1. 背景介绍 MuJoCo,或称为多关节动力学与控制的物理引擎,已经成为了强化学习中仿真环境的首选工具。其精确的物理仿真和高效的速度使得研究者可以在这个环境下测试和验证各种算法。PPO,即近端策略优化,是一种深度强化学习中的策略优化方法。它解决了TRPO…...

怎么给网络加速

首先,按winr,调出运行窗口。 输入cmd,回车,再输入gpedit.msc,调出本地组策略编辑器。 点击计算机配置下的管理模版。 再点击网络。 再点击Qos数据包计划程序。 再点击限制可保留宽带。 选择已启用,再把带宽…...

golang for循环append的数据重复

原因,因为使用了& 需要增加一行,问题解决...

趣谈网络协议_1

趣谈网络协议_1 第1讲 | 为什么要学习网络协议?第4讲 | DHCP与PXE:IP是怎么来的,又是怎么没的?动态主机配置协议(DHCP) 第5讲 | 从物理层到MAC层:如何在宿舍里自己组网玩联机游戏?第…...

利用WebStorm开发react——本文来自AI创作助手

要在WebStorm中开发React应用程序,请按照以下步骤进行设置: 1.安装Node.js和npm(如果尚未安装)。 2.下载和安装WebStorm。 3.打开WebStorm,并在欢迎界面中选择“Create New Project”。 4.在弹出窗口中&#xff0c…...

将本地构建的镜像推送到远程镜像库,构建多种系统架构支持的Docker镜像并推送到Docker Hub

目录 推送到 Docker Hub前提:需要在 [Docker Hub](https://hub.docker.com/) 创建账户、创建仓库。1. 创建 Dockerfile 和构建镜像:docker build -t2. 登录到远程镜像库:docker login3. 将镜像标记为远程仓库地址:docker tag4. 推…...

【技术分享】NetLogon于域内提权漏洞(CVE-2020-1472)

一、漏洞介绍 CVE-2020-1472是一个Windows域控中严重的远程权限提升漏洞。攻击者在通过NetLogon(MS-NRPC)协议与AD域控建立安全通道时,可利用该漏洞将AD域控的计算机账号密码置为空,从而控制域控服务器。该漏洞适用于Win2008及后…...

python学习之【模块】

前言 上一篇文章 python学习之【深拷贝】中学习了python中的深浅拷贝学习内容,这篇文章接着学习python中的模块。 什么是模块 在python中,一个文件(以“.py”为后缀名的文件)就叫做一个模块,每一个模块在python里都…...

dns电脑服务器发生故障怎么修复

DNS电脑服务器发生故障可能会导致网络连接问题、网页无法访问、或者电子邮件无法发送等情况。修复DNS电脑服务器故障可以采取多种方法,例如检查网络连接、更换DNS服务器等措施。当DNS电脑服务器发生故障时,可以采取以下修复措施: 尝试刷新DNS…...

Python项目Flask ipv6双栈支持改造

一、背景 Flask 是一个微型的(轻量)使用Python 语言开发的 WSGI Web 框架(一组库和模块),基于Werkzeug WSGI工具箱/库和Jinja2 模板引擎,当然,Python的WEB框架还有:Django、Tornado、Webpy,这暂且不提。 Flask使用BSD授权。 Flask也被称为microframework(微框架),F…...

hcia 目的mac为(单播 组播 广播)mac

从下往上看...

专栏十:10X单细胞的聚类树绘图

经常在文章中看到对细胞群进行聚类,以证明两个cluster之间的相关性,这里总结两种绘制这种图的方式和代码,当然我觉得这些五颜六色的颜色可能是后期加的,本帖子只总结画树状图的方法 例一 文章Single-cell analyses implicate ascites in remodeling the ecosystems of pr…...

linux查找命令使用的正则表达式

正则表达式是一种用于匹配和操作文本的强大工具,它是由一系列字符和特殊字符组成的模式,用于描述要匹配的文本模式。 正则表达式可以在文本中查找、替换、提取和验证特定的模式。 一般的查找命令是:grep,sed,awk 元字…...

ffmpeg6.0编译(NDK)

ffmpeg 6.0 支持vulkan 需要手动安装Vulkan 并将include里面的vk_video 和 vulkan 拷贝到 android-ndk-r25c/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/ vulkan 下载 cp -r vk_video $NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/…...

达观RPA实战-编码与解码

一、应用背景 项目中我们经常需要获取某个服务的JSON数据。如果响应返回的是JSON格式的数据,客户端通过JSON工具可正常解析。但如果碰到值里面有中文的,特别是返回的格式是类似“{"name": "\u5927\u7231\u4e2d\u56fd"}”处理起来会比较麻烦。本文将从编…...

配置Swagger开发环境有效,生产环境无效

安全扫描:通用信息泄漏【未授权访问ip:端口号/swagger-ui.html】 步骤一:配置启用变量【开发环境可用生产环境不可用】 application-dev.yml: swagger:enable: true application-pro.yml: swagger:enable: false 步骤二:根据配置变量控…...

Jmeter系列-线程组的执行顺序(10)

重点 每个测试计划至少需要有一个线程组 线程组下不同组件的执行优先级/顺序 1、配置元件、监听器 2、前置处理器 3、定时器 4、逻辑控制器 5、取样器 6、后置处理器 7、断言 取样器执行顺序 在没有逻辑控制器情况下,取样器是按从上往下的顺序执行的 参考文章…...

c# 面试题

简述 private、 protected、 public、 internal 修饰符的访问权限。 答: Private(拍非得) : 私有成员, 在类的内部才可以访问。 protected (普泰忒): 保护成员,该类内部和继承类中可以访问。 Publ…...

目录优先的图片库网站PiGallery2

什么是 PiGallery2 ? PiGallery2 是一个快速的目录优先的图片库网站,具有丰富的用户界面,针对在低资源服务器(尤其是树莓派)上运行进行了优化 所谓 目录优先 是指,这种网站的设计是以显示不同的目录&#x…...

17-垃圾回收相关概念

目录 一、System.gc()的理解二、内存溢出和内存泄漏2、内存泄漏 三、Stop the World1、什么是 stop the word ? 四、垃圾回收的并行和并发1、并发和并发2、垃圾回收的并行和并发 五、安全点与安全区域1、什么是安全点?2、安全区域 六、强引用(不可回收&…...

Ubuntu-server 22.04LTS源码编译apache服务器

1 系统环境 # cat /etc/os-release PRETTY_NAME"Ubuntu 22.04.3 LTS" NAME"Ubuntu" VERSION_ID"22.04" VERSION"22.04.3 LTS (Jammy Jellyfish)" VERSION_CODENAMEjammy IDubuntu ID_LIKEdebian HOME_URL"https://www.ubuntu.co…...

科技资讯|苹果虚拟纸可在Vision Pro中为广告、书籍等提供MR内容和动画

近日,美国专利商标局正式授予苹果一项与虚拟纸张相关的专利。这是与虚拟纸张这项发明相关的第二项专利,鉴于苹果 Vision Pro 将于明年上市,那么我们离苹果实现虚拟纸张的发明又近了一步。 虚拟纸张将能够包含 2D、3D 和动画等 MR内容&#…...

JavaScript-promise使用+状态

Promise 什么是PromisePromise对象就是异步操作的最终完成和失败的结果&#xff1b; Promise的基本使用&#xff1a; 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compati…...

xshell---git上传文件到gitee远程仓库配置

1.git下载 如果没有xshell下没有下载过git&#xff0c;可以参考这篇的教程&#xff1a;Linux配置安装 git 详细教程 下载后可以通过 git --version 查看git的版本号&#xff0c;验证是否安装成功 2.新建仓库 首先需要在gitee上注册一个账号 然后再主页面点击右上边框的 号…...

【GO语言基础】前言

系列文章目录 【Go语言学习】ide安装与配置 【GO语言基础】前言 【GO语言基础】变量常量 【GO语言基础】数据类型 文章目录 系列文章目录一、基础知识包和函数函数声明语法简洁性 括号成对出现GO常用DOS命令命名规则项目目录结构注释 总结 一、基础知识 包和函数 //声明本代…...

巧妙的设计

1. 判空逻辑,如果为空,抛异常,下面代码来自kafka client: Assert.notNull(queue, () -> "No cache found for " + txIdPrefix); 2. 本地cache设计,一下代码来自kafka client: private final Map<String, BlockingQueue<CloseSafeProducer<K, V&g…...

前端JavaScript中MutationObserver:监测DOM变化的强大工具

&#x1f3ac; 岸边的风&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 引言 1. MutationObserver简介 2. MutationObserver的属性 3. MutationObserver的应用场景 3.1 动态内容加载 …...

嘉兴网站制作套餐/互联网营销课程体系

基于CloudSim Plus的计算卸载仿真设计 1. 前提介绍 仿真框架的实现&#xff0c;主要依托于仿真实体、以及仿真事件&#xff0c;简单介绍如下 1.1 仿真实体 继承CloudSimEntity类(推荐)或者实现SimEntity接口(不建议) public class ExampleEntity extends CloudSimEntity {pu…...

龙岩网站制作/国内b2b十大平台排名

最近接了个美国的小项目&#xff0c;主要需求是把盘点机导出的数据&#xff08;DBF格式&#xff09;和另外的数据&#xff08;csv格式&#xff09;合并生成新的数据表&#xff0c;方便查询纠错。对方没有安装ms Access,考虑到对方使用方便&#xff0c;就采用了sqlite&#xff0…...

微信商城怎么弄/培训seo哪家学校好

一、基本了解 首先&#xff0c;我们先了解一下什么是SVG格式 百度百科&#xff1a;SVG格式 SVG是一种图像文件格式&#xff0c;它的英文全称为Scalable Vector Graphics&#xff0c;意思为可缩放的矢量图形。它是基于XML&#xff08;Extensible Markup Language&#xff09;&a…...

重庆网站seo公司/招工 最新招聘信息

1. 账户与账户安全 账户和组是操作系统的基本概念,linux的组有基本组和附加组之分,一个用户只可以加入到一个基本组中国,但是可以加入到多个附加组中.创建用户时,系统默认会自动创建同名的组,并设置用户加入该基本组中. 1.1 创建账户和组 1. useraddm-c 设置账户描述信息,一…...

网站空间期限查询/友情链接qq群

文章目录一、配置数据源-mysql二、下载安装1.1 下载包安装(已验证)1.2 Github 上下载源码(未验证)1.3 docker安装(已验证)三、springCloud pom主要配置3.1 pom3.2 bootstrap.yaml部分配置3.3 nacos设置对应一、配置数据源-mysql a:配置数据库 /*Navicat Premium Data Transfe…...

医院网站建设公司价格/我赢seo

Serializable是序列化的意思&#xff0c;表示将一个对象转换成可存储或可传输的状态。序列化后的对象可以在网络上进行传输,也可以存储到本地.序列化的方法很简单,实现Serializable接口就可以了. 1.比如有个Person类 public class Person implements Serializable{ private S…...