第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导
第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导
本篇博客精简自本人关于曲面积分的博客:详情见:曲面积分(Surface Integral)
曲面参数化(曲面上的每个点都使用起点为原点、终点为该曲面上的点的向量表示)
x o y xoy xoy平面中区域 R R R(其实是曲面在 x o y xoy xoy平面上的投影)上方的曲面,其参数表示式 r ( u , v ) = f ( u , v ) i + g ( u , v ) j + h ( u , v ) k \bold{r}(u,v)=f(u,v)\bold{i}+g(u,v)\bold{j}+h(u,v)\bold{k} r(u,v)=f(u,v)i+g(u,v)j+h(u,v)k

点 P P P处的沿 u u u轴和 v v v轴的切向量分别是:
r u = ∂ r ( u , v ) ∂ u = ∂ f ( u , v ) ∂ u i + ∂ g ( u , v ) ∂ u j + ∂ h ( u , v ) ∂ u k \bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\frac{\partial f(u,v)}{\partial u}\bold{i}+\frac{\partial g(u,v)}{\partial u}\bold{j}+\frac{\partial h(u,v)}{\partial u}\bold{k} ru=∂u∂r(u,v)=∂u∂f(u,v)i+∂u∂g(u,v)j+∂u∂h(u,v)k
r v = ∂ r ( u , v ) ∂ v = ∂ f ( u , v ) ∂ v i + ∂ g ( u , v ) ∂ v j + ∂ h ( u , v ) ∂ v k \bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\frac{\partial f(u,v)}{\partial v}\bold{i}+\frac{\partial g(u,v)}{\partial v}\bold{j}+\frac{\partial h(u,v)}{\partial v}\bold{k} rv=∂v∂r(u,v)=∂v∂f(u,v)i+∂v∂g(u,v)j+∂v∂h(u,v)k

点P处的沿 u u u轴和 v v v轴的切向量叉乘的数值大小为两个切向量组成四边形的面积,使用该面积替代下方的曲面微元(以直平面替代曲面)
S 1 = ∣ r u × r v ∣ S_1=|\bold{r_u}×\bold{r_v}| S1=∣ru×rv∣

对 r u 、 r v r_u、r_v ru、rv进行缩放调整其大小基本和下方曲面边长大小差不多, Δ u r u 、 Δ v r v \Delta ur_u、\Delta vr_v Δuru、Δvrv,现在直平面面积变为了
S = ∣ Δ u r u × Δ v r v ∣ = ∣ r u × r v ∣ Δ u Δ v ≈ Δ σ x y S=|\Delta ur_u×\Delta vr_v|=|\bold{r_u}×\bold{r_v}|\Delta u\Delta v\approx \Delta\sigma_{xy} S=∣Δuru×Δvrv∣=∣ru×rv∣ΔuΔv≈Δσxy

曲面微元 d σ d\sigma dσ与 d u d v dudv dudv之间的关系
d σ = ∣ r u × r v ∣ d u d v d\sigma=|\bold{r_u}×\bold{r_v}|dudv dσ=∣ru×rv∣dudv
若曲面的面密度不是常数,即被积函数不是常数,则曲面S质量为:
∬ S G ( x , y , z ) d σ = ∬ R G ( f ( u , v ) , g ( u , v ) , h ( u , v ) ) ∣ r u × r v ∣ d u d v \iint\limits_{S}G(x,y,z)d\sigma=\iint\limits_{R}G(f(u,v),g(u,v),h(u,v))|\bold{r_u}×\bold{r_v}|dudv S∬G(x,y,z)dσ=R∬G(f(u,v),g(u,v),h(u,v))∣ru×rv∣dudv
若我们取 x = u 、 y = v 、 z = f ( x , y ) x=u、y=v、z=f(x,y) x=u、y=v、z=f(x,y),其中 z = f ( x , y ) z=f(x,y) z=f(x,y)是 x o y xoy xoy平面中区域 R R R上的曲面表达式
参数化后曲面的表示式
r ( u , v ) = u i + v j + f ( u , v ) k \bold{r}(u,v)=u\bold{i}+v\bold{j}+f(u,v)\bold{k} r(u,v)=ui+vj+f(u,v)k
点P处的沿 u u u轴和 v v v轴的切向量分别是:
r u = ∂ r ( u , v ) ∂ u = i + f u ′ ( u , v ) k \bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\bold{i}+f'_u(u,v)\bold{k} ru=∂u∂r(u,v)=i+fu′(u,v)k
r v = ∂ r ( u , v ) ∂ v = j + f v ′ ( u , v ) k \bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\bold{j}+f'_v(u,v)\bold{k} rv=∂v∂r(u,v)=j+fv′(u,v)k
r u × r v = ∣ i j k 1 0 f u ′ 0 1 f v ′ ∣ = − f u ′ i − f v ′ j + k \bold{r_u}×\bold{r_v}=\left | \begin{matrix} \bold{i}&\bold{j}&\bold{k}\\ 1 & 0 & f'_u \\ 0 & 1 & f'_v \\ \end{matrix} \right | =-f'_u\bold{i}-f'_v\bold{j}+\bold{k} ru×rv= i10j01kfu′fv′ =−fu′i−fv′j+k
∣ r u × r v ∣ = ( − f u ′ ) 2 + ( − f v ′ ) 2 + 1 2 = f u ′ 2 + f v ′ 2 + 1 |\bold{r_u}×\bold{r_v}|=\sqrt{(-f'_u)^2+(-f'_v)^2+1^2}=\sqrt{f'^2_u+f'^2_v+1} ∣ru×rv∣=(−fu′)2+(−fv′)2+12=fu′2+fv′2+1
∣ r u × r v ∣ d u d v = ( − f u ′ ) 2 + ( − f v ′ ) 2 + 1 2 d u d v = f u ′ 2 + f v ′ 2 + 1 d u d v |\bold{r_u}×\bold{r_v}|dudv=\sqrt{(-f'_u)^2+(-f'_v)^2+1^2}dudv=\sqrt{f'^2_u+f'^2_v+1}dudv ∣ru×rv∣dudv=(−fu′)2+(−fv′)2+12dudv=fu′2+fv′2+1dudv
将参数化后的参数替换为原参 x = u 、 y = v x=u、y=v x=u、y=v
曲面微元 d σ d\sigma dσ与其投影面积微元 d x d y dxdy dxdy之间的关系
d σ = f x ′ 2 + f y ′ 2 + 1 d x d y d\sigma=\sqrt{f'^2_x+f'^2_y+1}dxdy dσ=fx′2+fy′2+1dxdy
区域R(曲面投影)上方曲面的面积为:
∬ R d σ = ∬ R f x ′ 2 + f y ′ 2 + 1 d x d y \iint\limits_{R}d\sigma=\iint\limits_{R}\sqrt{f'^2_x+f'^2_y+1}dxdy R∬dσ=R∬fx′2+fy′2+1dxdy
曲面显式表达式: z = f ( x , y ) z=f(x,y) z=f(x,y),曲面隐式表达式: G ( x , y , z ) = z − f ( x , y ) G(x,y,z)=z-f(x,y) G(x,y,z)=z−f(x,y)
G x ′ ( x , y , z ) = − f x ′ ( x , y ) G y ′ ( x , y , z ) = − f y ′ ( x , y ) G z ′ ( x , y , z ) = 1 G'_x(x,y,z)=-f'_x(x,y)\\ ~\\ G'_y(x,y,z)=-f'_y(x,y)\\ ~\\ G'_z(x,y,z)=1 Gx′(x,y,z)=−fx′(x,y) Gy′(x,y,z)=−fy′(x,y) Gz′(x,y,z)=1
若曲面的面密度不是常数,即被积函数不是常数,则曲面S质量为:
∬ S G ( x , y , z ) d σ = ∬ R G ( x , y , f ( x , y ) ) f x ′ 2 + f y ′ 2 + 1 d x d y \iint\limits_{S}G(x,y,z)d\sigma=\iint\limits_{R}G(x,y,f(x,y))\sqrt{f'^2_x+f'^2_y+1}dxdy S∬G(x,y,z)dσ=R∬G(x,y,f(x,y))fx′2+fy′2+1dxdy
相关文章:
第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导
第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导 本篇博客精简自本人关于曲面积分的博客:详情见:曲面积分(Surface Integral) 曲面参数化(曲面上的每个点都使用起点为原点、终点为该曲面上的点的向量表示&#x…...
vue学习之Font Awesome图标
官方文档 https://fontawesome.com.cn/v5 Font Awesome 安装 cnpm install font-awesome/src/main.js 引入css import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue;...
mysql内连接与外连接详解
内连接与外连接 内连接外连接 在数据库中,连接操作是一种把两个或者多个表的记录组合在一起的操作,常用的有内连接(Inner Join)、外连接(Outer Join)等。 内连接 内连接(Inner Join࿰…...
在Mujoco环境下详细实现PPO算法应用于Humanoid-v2的完整教程
第一部分:介绍 1. 背景介绍 MuJoCo,或称为多关节动力学与控制的物理引擎,已经成为了强化学习中仿真环境的首选工具。其精确的物理仿真和高效的速度使得研究者可以在这个环境下测试和验证各种算法。PPO,即近端策略优化,是一种深度强化学习中的策略优化方法。它解决了TRPO…...
怎么给网络加速
首先,按winr,调出运行窗口。 输入cmd,回车,再输入gpedit.msc,调出本地组策略编辑器。 点击计算机配置下的管理模版。 再点击网络。 再点击Qos数据包计划程序。 再点击限制可保留宽带。 选择已启用,再把带宽…...
golang for循环append的数据重复
原因,因为使用了& 需要增加一行,问题解决...
趣谈网络协议_1
趣谈网络协议_1 第1讲 | 为什么要学习网络协议?第4讲 | DHCP与PXE:IP是怎么来的,又是怎么没的?动态主机配置协议(DHCP) 第5讲 | 从物理层到MAC层:如何在宿舍里自己组网玩联机游戏?第…...
利用WebStorm开发react——本文来自AI创作助手
要在WebStorm中开发React应用程序,请按照以下步骤进行设置: 1.安装Node.js和npm(如果尚未安装)。 2.下载和安装WebStorm。 3.打开WebStorm,并在欢迎界面中选择“Create New Project”。 4.在弹出窗口中,…...
将本地构建的镜像推送到远程镜像库,构建多种系统架构支持的Docker镜像并推送到Docker Hub
目录 推送到 Docker Hub前提:需要在 [Docker Hub](https://hub.docker.com/) 创建账户、创建仓库。1. 创建 Dockerfile 和构建镜像:docker build -t2. 登录到远程镜像库:docker login3. 将镜像标记为远程仓库地址:docker tag4. 推…...
【技术分享】NetLogon于域内提权漏洞(CVE-2020-1472)
一、漏洞介绍 CVE-2020-1472是一个Windows域控中严重的远程权限提升漏洞。攻击者在通过NetLogon(MS-NRPC)协议与AD域控建立安全通道时,可利用该漏洞将AD域控的计算机账号密码置为空,从而控制域控服务器。该漏洞适用于Win2008及后…...
python学习之【模块】
前言 上一篇文章 python学习之【深拷贝】中学习了python中的深浅拷贝学习内容,这篇文章接着学习python中的模块。 什么是模块 在python中,一个文件(以“.py”为后缀名的文件)就叫做一个模块,每一个模块在python里都…...
dns电脑服务器发生故障怎么修复
DNS电脑服务器发生故障可能会导致网络连接问题、网页无法访问、或者电子邮件无法发送等情况。修复DNS电脑服务器故障可以采取多种方法,例如检查网络连接、更换DNS服务器等措施。当DNS电脑服务器发生故障时,可以采取以下修复措施: 尝试刷新DNS…...
Python项目Flask ipv6双栈支持改造
一、背景 Flask 是一个微型的(轻量)使用Python 语言开发的 WSGI Web 框架(一组库和模块),基于Werkzeug WSGI工具箱/库和Jinja2 模板引擎,当然,Python的WEB框架还有:Django、Tornado、Webpy,这暂且不提。 Flask使用BSD授权。 Flask也被称为microframework(微框架),F…...
hcia 目的mac为(单播 组播 广播)mac
从下往上看...
专栏十:10X单细胞的聚类树绘图
经常在文章中看到对细胞群进行聚类,以证明两个cluster之间的相关性,这里总结两种绘制这种图的方式和代码,当然我觉得这些五颜六色的颜色可能是后期加的,本帖子只总结画树状图的方法 例一 文章Single-cell analyses implicate ascites in remodeling the ecosystems of pr…...
linux查找命令使用的正则表达式
正则表达式是一种用于匹配和操作文本的强大工具,它是由一系列字符和特殊字符组成的模式,用于描述要匹配的文本模式。 正则表达式可以在文本中查找、替换、提取和验证特定的模式。 一般的查找命令是:grep,sed,awk 元字…...
ffmpeg6.0编译(NDK)
ffmpeg 6.0 支持vulkan 需要手动安装Vulkan 并将include里面的vk_video 和 vulkan 拷贝到 android-ndk-r25c/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/ vulkan 下载 cp -r vk_video $NDK_HOME/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/…...
达观RPA实战-编码与解码
一、应用背景 项目中我们经常需要获取某个服务的JSON数据。如果响应返回的是JSON格式的数据,客户端通过JSON工具可正常解析。但如果碰到值里面有中文的,特别是返回的格式是类似“{"name": "\u5927\u7231\u4e2d\u56fd"}”处理起来会比较麻烦。本文将从编…...
配置Swagger开发环境有效,生产环境无效
安全扫描:通用信息泄漏【未授权访问ip:端口号/swagger-ui.html】 步骤一:配置启用变量【开发环境可用生产环境不可用】 application-dev.yml: swagger:enable: true application-pro.yml: swagger:enable: false 步骤二:根据配置变量控…...
Jmeter系列-线程组的执行顺序(10)
重点 每个测试计划至少需要有一个线程组 线程组下不同组件的执行优先级/顺序 1、配置元件、监听器 2、前置处理器 3、定时器 4、逻辑控制器 5、取样器 6、后置处理器 7、断言 取样器执行顺序 在没有逻辑控制器情况下,取样器是按从上往下的顺序执行的 参考文章…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
