leetcode 18. 四数之和
给你一个由 n
个整数组成的数组 nums
,和一个目标值 target
。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]]
(若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
a
、b
、c
和d
互不相同nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
// 给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]]
// (若两个四元组元素一一对应,则认为两个四元组重复):
// nums[a] + nums[b] + nums[c] + nums[d] = target
// -1
// 1 1 -1 -2 -> -2 -1 1 1
// -2 + (-1) = -3
// -1 1 2 2
// -1+1 = 0class Solution {
public:vector<vector<int>> fourSum(vector<int>& nums, int target) {vector<vector<int>> result;sort(nums.begin(),nums.end());int sum = 0;int left,right;for(int k=0;k<nums.size();k++) {// 剪枝处理if(nums[k] > target && nums[k] >= 0) break;// 正确去重a方法if(k>0 && nums[k] == nums[k-1]) continue;for(int i = k + 1;i < nums.size();i++) {// 2级剪枝处理 ? 什么时候会出现这种情况if(nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {// [1,0,-1,0,-2,2]// -2 -1 0 0 1 2 // 剪枝:-1 2// 剪枝: 0 1// 因为只要 nums[k] + nums[i] > target,那么 nums[i] 后面的数都是正数的话,就一定 不符合条件了。cout<< nums[k] <<" "<< nums[i] <<endl;cout<<"2级剪枝处理?"<<endl;break;}// 对nums[i]去重if(i > k+1 && nums[i] == nums[i-1]) continue;left = i + 1;right = nums.size() - 1;while(right > left) {sum = nums[k] + nums[i] + nums[left] + nums[right];if((long)sum > target) right--;else if((long)sum < target) left++;else {result.push_back(vector<int>{nums[k],nums[i],nums[left],nums[right]});// 对nums[left] 和 nums[right] 去重while(right > left && nums[right] == nums[right-1]) right--;while(right > left && nums[left] == nums[left-1]) left++;// 找到答案时,双指针同时收缩right--;left++;}}}}return result;}
};
相关文章:
leetcode 18. 四数之和
给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复): 0 < a,…...
树上背包问题动态规划
目录 树状动态规划概述 示例 求解思路 树状动态规划概述 树状动态规划(Tree DP)是一种在树结构上进行动态规划的方法。在树状DP中,我们利用树的特殊结构性质,通过递归地向下更新子节点的状态,最终得到整个树的最…...
linux查看进程对应的线程(数)
首先,top或ps查看进程列表,确定要查看的进程pid,如下面40698 查看进程的线程情况 查看进程:top -p 40698 查看线程:top -p 40698 -d 3 -H 其中-d是刷新频率 可看到此进程共211个线程,运行中的是211个。…...
Python中的桌面应用开发库有哪些?
Python中有几个受欢迎的桌面应用开发库。以下是其中一些: Tkinter:这是Python的标准GUI库,它提供了构建简单的桌面应用程序的基本组件和功能。 PyQt:这是一个成熟的、功能强大的跨平台图形用户界面框架,它是Python绑定…...
【大数据】Neo4j 图数据库使用详解
目录 一、图数据库介绍 1.1 什么是图数据库 1.2 为什么需要图数据库 1.3 图数据库应用领域 二、图数据库Neo4j简介 2.1 Neo4j特性 2.2 Neo4j优点 三、Neo4j数据模型 3.1 图论基础 3.2 属性图模型 3.3 Neo4j的构建元素 3.3.1 节点 3.3.2 属性 3.3.3 关系 3.3.4 标…...
Windows11系统C盘用户文件夹下用户文件夹为中文,解决方案
说明: 1. 博主电脑为Windows11操作系统,亲测有效,修改后无任何影响,软件都可以正常运行! 2. Windows10系统还不知道可不可行,因为Windows11的计算机管理中没有本地用户和组,博主在csdn上看到很…...
Python正则表达式(re)
正则表达式,又称规则表达式,(Regular Expression,在代码中常简写为regex、regexp或RE),是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为…...
【PyTorch 08】如果要手动安装对应的包
例如有时候我们要下载 PyG ,但是需要手动下载,需要进行以下步骤: 网站链接:https://data.pyg.org/whl/ 首先查看当前安装好的Pytorch版本和对应的cuda版本 1. pip list:查看torch版本 2. torch.version.cuda…...
黑马JVM总结(十二)
(1)五种引用_强软弱 实线箭头表示强引用,虚心线表示软弱虚终结器引用 在平时我们用的引用,基本都为强引用 ,比如说创建一个对象通过运算符赋值给了一个变量,那么这个变量呢就强引用了刚刚的对象 强引用的…...
彻底搞懂线程池原理以及创建方式
1. 为什么要使用线程池 在实际使用中,线程是很占用系统资源的,如果对线程管理不善很容易导致系统问题。因此,在大多数并发框架中都会使用线程池来管理线程,使用线程池管理线程主要有如下好处: 降低资源消耗。通过复用…...
FreeSWITCH 1.10.10 简单图形化界面9 - 鼎兴FXO网关SIP中继内网IPPBX落地
FreeSWITCH 1.10.10 简单图形化界面9 - 鼎兴FXO网关SIP中继内网IPPBX落地 0、 界面预览1、创建一个话务台2、创建PBX SIP中继并设置呼入权限3、设置呼出规则4、设置分机呼出权限5、设置FXO 网关相关信息6、设置FXO网关端口组呼入号码7、设置FXO网关的SIP中继8、设置FXO网关呼叫…...
Oracle数据如何迁移导入到MySQL
使用Navicat工具建立数据连接,进行数据传输 1、打开Navicat工具,分别连接Oracle数据库和MySQL数据库。 2、连接源选择你的oracle数据,目标选mysql 即可成功导入...
卡尔曼滤波(Kalman Filter)原理浅析-数学理论推导-1
目录 前言数学理论推导1. 递归算法2. 数学基础结语参考 前言 最近项目需求涉及到目标跟踪部分,准备从 DeepSORT 多目标跟踪算法入手。DeepSORT 中涉及的内容有点多,以前也就对其进行了简单的了解,但是真正去做发现总是存在这样或者那样的困惑…...
Linux 文件创建、查看
touch、cat、more命令 ①touch命令——创建文件 ②cat命令——查看文件内容全部显示 这是txt.txt文件内容 使用cat命令查看 ③more命令——查看文件内容支持翻页 在查看的过程中,通过空格翻页,通过q退出查看...
WPF 如何让xmal的属性换行显示 格式化
WPF 如何让UI的xmal 按照下面的格式化显示 首先格式化显示在VS中的快捷键是 Ctrl KD 然后需要配置,工具 选项 -文本编辑器 -xmal -格式化-间距 更改成如下就可以了...
Linux学习之MySQL主从复制
MySQL配置一主一从 环境准备: 两台服务器: Master:192.168.88.53,Slave:192.168.88.54 在两台服务器上安装mysql-server # 配置主服务器192.168.88.53 # 启用binlog日志 [rootmysql53 ~]# yum -y install mysql-ser…...
【JavaSE笔记】抽象类与接口
一、抽象类 1、概念 在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,这样的类就是抽象类。 package demo2…...
详谈操作系统中的内核态和用户态
不知道大家有没有思考过这样一个问题:什么是处理器(CPU)的状态?🤔 其实CPU和人一样,没有执行程序的时候,是没有什么状态的,当它执行的程序是用户程序的时候就叫用户态,当执行的程序是操作系统的代码时就叫系统态或者内…...
OpenWrt KernelPackage分析
一. 前言 KernelPackage是OpenWrt用来编译内核模块的函数,其实KernelPackage后面会调用BuildPackage,这里会一块将BuildPackage也顺便分析,本文以gpio-button-hotplug驱动模块为例,讲解整个编译过程。 gpio-button-hotplug驱动编译…...
第 363 场 LeetCode 周赛题解
A 计算 K 置位下标对应元素的和 模拟 class Solution { public:int pop_cnt(int x) {//求x的二进制表示中的1的位数int res 0;for (; x; x >> 1)if (x & 1)res;return res;}int sumIndicesWithKSetBits(vector<int> &nums, int k) {int res 0;for (int i…...
ffplay源码解析-main入口函数
main入口函数 初始化 变量、缓存区、SDL窗口初始化等 int main(int argc, char **argv) {int flags;VideoState *is; // av_log_set_level(AV_LOG_TRACE);init_dynload();av_log_set_flags(AV_LOG_SKIP_REPEATED);parse_loglevel(argc, argv, options);/// av_log_set_le…...
这些Coding套路你不会还不知道吧?
对于一名程序员来说,编码进阶是成为优秀工程师非常重要的一步,它可以让我们更加熟练地掌握编程,深入理解数据结构和算法,从而更好地完成复杂的任务,提高工作效率。而我认为熟练使用设计模式就是编码进阶的最好方式之一…...
Spring Boot深度解析:快速开发的秘密
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...
mysql数据库备份(mysqldump)
mysqldump命令备份数据 mysqldump -u root -p --databases 数据库1 数据库2 > xxx.sqlmysqldump常用操作示例 1. 备份全部数据库的数据和结构 mysqldump -uroot -p123456 -A > /data/mysqlbackup/mydb.sql2. 备份全部数据库的结构(加 -d 参数) …...
linux Nginx+Tomcat负载均衡、动静分离
linux NginxTomcat负载均衡、动静分离 1、Tomcat的基本介绍1.1Tomcat是什么?1.2Tomcat的构成组件1.3Tomcat的核心功能1.4Tomcat请求过程 2、Tomcat部署2.1安装tomcat2.2优化tomcat启动速度2.4主要目录说明 3、Tomcat 虚拟主机配置3.1创建fsj和mws项目目录和文件3.2修…...
ts 枚举类型原理及其应用详解
ts 枚举类型介绍 TypeScript的枚举类型是一种特殊的数据类型,它允许开发者为一组相关值定义一个共同的名称,使我们可以更清晰、更一致地使用这些值。 枚举类型在TypeScript中用enum关键字定义,每个枚举值默认都是数字类型,从0开…...
腾讯mini项目-【指标监控服务重构】2023-08-23
今日已办 进度和问题汇总 请求合并 feature/venus tracefeature/venus metricfeature/profile-otel-baserunner-stylebugfix/profile-logger-Syncfeature/profile_otelclient_enable_config 完成otel 开关 trace-采样metrice-reader 已经都在各自服务器运行,并接入…...
C- ssize_t size_t
size_t 和 ssize_t 都是在 C 和 C 的标准库中定义的数据类型,它们通常用于表示大小和长度。然而,它们有关键的区别。 size_t: 定义:size_t 是一个无符号整数类型,它是适合表示对象的大小的类型。在 POSIX 中,它也用于…...
ubuntu20.04 Supervisor 开机自启动脚本一文配置
前言: 最近发现一种非常好的开机启动服务方式,不光可以开机自启动,而且还可以进行开机节点的进程守护,这样大大确保了线程的稳定情况,这种服务甚至可以守护开机的进程,所以比之前设置 rc.local 开机自启动脚本一文配置节点好出很多,它甚至可以使用网页登录监管我开机自启…...
【面试刷题】——函数指针和指针函数
“函数指针”(function pointer)和 “指针函数”(pointer to function)是两个不同的概念,它们涉及到指针和函数的结合使用。 函数指针(Function Pointer): 函数指针是指向函数的指…...
沧州哪家做网站好/营销策划方案怎么做
默认插槽: 父组件中:<Category><div>html结构1</div></Category>子组件中:<template><div><!-- 定义插槽 --><slot>插槽默认内容...</slot></div></template>具名插槽&a…...
做网站太麻烦了/免费下载app并安装
感觉很水。 因为SAM上一个点的子树大小代表这个点所表示子串的出现次数。 建出广义后缀自动机之后。在\(parent\)树上跑\(DP\),维护\(size[i][1]\),和\(size[i][0]\)代表i的子树中有多少第一个串的结束节点和第二个串的结束节点,然后答案就是\(size[i][0…...
http网站跳转怎么做/专业网络推广公司
PDC(专业开发人员会议)一直是由微软的高级开发者和架构师作为参与者,以便了解未来的微软平台和技术,PDC 2010,您将可以获得关于微软下一代云服务、Windows Phone 7、工具和技术、Internet Explorer 9 和游戏平台的第一手内容,PDC …...
品质培训网站建设/百度网址大全 旧版本
复习详尽攻略:梦圆华工中探花自助者天助之,考研也是如此。你必须十分努力,才能看起来毫不费力。下面分享一位前辈的考研经验。作者91淘气小卒次阅读2017-01-16【摘要】自助者天助之,考研也是如此。你必须十分努力,才能…...
哈尔滨建设网站的免费咨询/跨境电商网站开发
试验网站#1搜索引擎优化收录情况记录(断续运行)日期Yahoogooglebaidusogou每日收录每日收录增量每日收录每日收录增量每日收录每日收录增量每日收录每日收录增量2007-6-24288 333 1060 4813 2007-6-25164013523330108020481302007-6-26空间超过6月流量限制……,…...
西樵建网站/哈尔滨seo推广优化
好的数据库设计一定是精致、优雅、赏心悦目、让人心醉。 为了建立冗余较小、结构合理的数据库,设计数据库时必须遵循一定的规则。在关系型数据库中这种规则就称为范式。范式是符合某一种设计要求的总结。,以提升数据库的存储效率、数据完整性和可扩展性…...