时序预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测
时序预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测
目录
- 时序预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测
- 效果一览
- 基本介绍
- 模型搭建
- 程序设计
- 参考资料
效果一览









基本介绍
MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测。基于贝叶斯(bayes)优化双向门控循环单元的时间序列预测,BO-BiGRU/Bayes-BiGRU时间序列预测模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2018b及以上。
模型搭建
BO-BiGRU(贝叶斯优化双向门控循环单元)是一种结合了贝叶斯优化和双向门控循环单元(BiGRU)的方法,用于时间序列预测任务。在时间序列预测中,我们试图根据过去的观测值来预测未来的值。
双向门控循环单元(BiGRU)是循环神经网络(RNN)的一种变体,具有比传统循环神经网络更强大的建模能力。它通过使用更新门和重置门来控制信息的流动,从而更好地捕捉时间序列中的长期依赖关系。
贝叶斯优化是一种用于优化问题的方法,它能够在未知的目标函数上进行采样,并根据已有的样本调整采样的位置。这种方法可以帮助我们在搜索空间中高效地找到最优解。
BO-BiGRU的基本思想是使用贝叶斯优化来自动调整模型的超参数,以获得更好的时间序列预测性能。贝叶斯优化算法根据已有的模型性能样本,选择下一个超参数配置进行评估,逐步搜索超参数空间,并利用贝叶斯推断方法更新超参数的概率分布。通过这种方式,BO-BiGRU可以在相对较少的模型训练迭代次数内找到更好的超参数配置,从而提高时间序列预测的准确性。
总结起来,BO-BiGRU是一种结合了贝叶斯优化和门控循环单元的方法,用于时间序列预测任务。它通过自动调整超参数来提高模型性能,并能够更好地捕捉时间序列中的长期依赖关系。
- MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测
伪代码

- 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现BO-GRU贝叶斯优化门控循环单元时间序列预测。
%% 优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%% 贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%% 创建网络架构
% 输入特征维度
numFeatures = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
% 创建"LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% 特征学习 dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output') ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;options = trainingOptions( 'adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',optVars.InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',400, ...'LearnRateDropFactor',0.2, ...'L2Regularization',optVars.L2Regularization,...'Verbose',false, ...'Plots','none');%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
时序预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测
时序预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测 目录 时序预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元时间序列预测。…...
【深度学习实验】线性模型(五):使用Pytorch实现线性模型:基于鸢尾花数据集,对模型进行评估(使用随机梯度下降优化器)
目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入库 1. 线性模型linear_model 2. 损失函数loss_function 3. 鸢尾花数据预处理 4. 初始化权重和偏置 5. 优化器 6. 迭代 7. 测试集预测 8. 实验结果评估 9. 完整代码 一、实验介…...
ADB底层原理
介绍 adb的全称为Android Debug Bridge,就是起到调试桥的作用。通过adb我们可以在Eclipse/Android Studio中方便通过DDMS来调试Android程序,说白了就是debug工具。adb是android sdk里的一个工具, 用这个工具可以直接操作管理android模拟器或者真实的and…...
etcd之读性能主要影响因素
1、Raft模块-线性读ReadIndex-节点之间的RTT延时、磁盘IO 线性读时Follower节点首先会向Raft 模块发送ReadIndex请求,此时Raft模块会先向各节点发送心跳确认,一半以上节点确认 Leader 身份后由leader节点将已提交日志索引 (committed index) 封装成 Rea…...
【Stable Diffusion】安装 Comfyui 之 window版
序言 由于stable diffusion web ui无法做到对流程进行控制,只是点击个生成按钮后,一切都交给AI来处理。但是用于生产生活是需要精细化对各个流程都要进行控制的。 故也就有个今天的猪脚:Comfyui 步骤 下载comfyui项目配置大模型和vae下载…...
Ansys Zemax | 如何建立二向分色分光镜
分光镜(Beam splitter)可被运用在许多不同的场合。一般而言,入射光抵达二向分色分光镜(dichroic beam splitter)时,会根据波长的差异产生穿透或反射的现象。这篇文章将说明如何在OpticStudio的非序列模式(non-sequential mode)中建立二向分色分光镜&…...
Mybatis学习笔记8 查询返回专题
1.返回实体类 2.返回List<实体类> 3.返回Map 4.返回List<Map> 5.返回Map<String,Map> 6.resultMap结果集映射 7.返回总记录条数 新建模块 依赖 目录结构 1.返回实体类 如果返回多条,用单个实体接收会出异常 2.返回List<实体类> 即使返回一条记…...
【测试开发】基础篇 · 专业术语 · 软件测试生命周期 · bug的描述 · bug的级别 · bug的生命周期 · 处理争执
【测试开发】基础篇 文章目录 【测试开发】基础篇1. 软件测试生命周期1.1 软件生命周期1.2 软件测试生命周期 2. 描述bug3. 如何定义bug的级别3.1 为什么要对bug进行级别划分3.2 bug的一些常见级别 4. bug的生命周期5. 产生争执这么怎么办(处理人际关系)…...
bing许少辉乡村振兴战略下传统村落文化旅游设计images
bing许少辉乡村振兴战略下传统村落文化旅游设计images...
第三十一章 Classes - 继承规则
第三十一章 Classes - 继承规则 继承规则 与其他基于类的语言一样,可以通过继承组合多个类定义。 类定义可以扩展(或继承)多个其他类。这些类又可以扩展其他类。 请注意,类不能继承 Python 中定义的类(即 .py 文件中…...
华为云HECS安装docker并安装mysql
1、运行安装指令 yum install docker都选择y,直到安装成功 2、查看是否安装成功 运行版本查看指令,显示docker版本,证明安装成功 docker --version 3、启用并运行docker 3.1启用docker指令 systemctl enable docker 3.2 运行docker指令…...
MQ - 04 基础篇_存储_消息数据和元数据的存储设计
文章目录 导图概述元数据信息的存储消息数据的存储数据存储结构设计思路一 (Kafka的方案)思路二 (RocketMQ、RabbitMQ 和 Pulsar 的底层存储 BookKeeper 采用的方案)消息数据的分段实现根据偏移量定位根据索引定位 (RabbitMQ 和 RocketMQ的思路)使用场景消息数据存储格式…...
JavaScript:隐式转换、显示转换、隐式操作、显示操作
一、理解js隐式转换 JavaScript 中的隐式转换是指不需要显式地调用转换函数,而是在执行期间自动发生的数据类型的转换。即在使用不同类型的值进行操作时,JavaScript会自动进行类型转换。这种转换通常发生在不同数据类型之间进行运算或比较时。 序号分类…...
2023全新TwoNav开源网址导航系统源码 | 去授权版
2023全新TwoNav开源网址导航系统源码 已过授权 所有功能可用 测试环境:NginxPHP7.4MySQL5.6 一款开源的书签导航管理程序,界面简洁,安装简单,使用方便,基础功能免费。 TwoNav可帮助你将浏览器书签集中式管理&#…...
Android 12 源码分析 —— 应用层 六(StatusBar的UI创建和初始化)
Android 12 源码分析 —— 应用层 六(StatusBar的UI创建和初始化) 在前面的文章中,我们分别介绍了Layout整体布局,以及StatusBar类的初始化.前者介绍了整体上面的布局,后者介绍了三大窗口的创建的入口处,以及需要做的准备工作.现在我们分别来细化三大窗口的UI创建和…...
华为云ROMA Connect亮相Gartner®全球应用创新及商业解决方案峰会,助力企业应用集成和数字化转型
9月13日-9月14日 Gartner全球应用创新及商业解决方案峰会在伦敦举行 本届峰会以“重塑软件交付,驱动业务价值”为主题,全球1000多位业内专家交流最新的企业应用、软件工程、解决方案架构、集成与自动化、API等企业IT战略和新兴技术热门话题。 9月13日…...
虚拟线上发布会带来颠覆性新体验,3D虚拟场景直播迸发品牌新动能
虚拟线上发布会是近年来在数字化营销领域备受关注的形式,而随着虚拟现实技术的不断进步,3D虚拟场景直播更成为了品牌宣传、推广的新选择。可以说,虚拟线上发布会正在以其颠覆性的新体验,为品牌带来全新的活力。 1.突破时空限制&am…...
Linux arm64 pte相关宏
文章目录 一、pte 和 pfn1.1 pte_pfn1.2 pfn_pte 二、其他宏参考资料 一、pte 和 pfn // linux-5.4.18/arch/arm64/include/asm/pgtable.h#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) #define pfn_pte(pfn,prot) \__pte(__phys_to_pte_val((phys_addr_t)…...
MVCC:多版本并发控制案例分析(一)
(笔记总结自b站马士兵教育课程) 一、简介 MVCC:全称multi-version Concurency control,多版本并发控制,是为了解决并发读写问题存在的。MVCC的实现原理由三部分组成:隐藏字段、undolog、readview。 二、概…...
以数据为中心的安全市场快速增长
根据Adroit Market Research的数据,2021年全球以数据为中心的安全市场规模估计为27.6亿美元,预计到2030年将增长至393.48亿美元,2021年至2030年的复合年增长率为30.9%。 研究人员表示,以数据为中心的安全强调保护数据本身&#x…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
