计算机竞赛 深度学习 python opencv 火焰检测识别
文章目录
- 0 前言
- 1 基于YOLO的火焰检测与识别
- 2 课题背景
- 3 卷积神经网络
- 3.1 卷积层
- 3.2 池化层
- 3.3 激活函数:
- 3.4 全连接层
- 3.5 使用tensorflow中keras模块实现卷积神经网络
- 4 YOLOV5
- 4.1 网络架构图
- 4.2 输入端
- 4.3 基准网络
- 4.4 Neck网络
- 4.5 Head输出层
- 5 数据集准备
- 5.1 数据标注简介
- 5.2 数据保存
- 6 模型训练
- 6.1 修改数据配置文件
- 6.2 修改模型配置文件
- 6.3 开始训练模型
- 7 实现效果
- 7.1图片效果
- 7.2 视频效果
- 7.3 摄像头实时效果
- 8 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 基于深度学习的火焰识别算法研究与实现
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:4分
- 工作量:4分
- 创新点:3分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 基于YOLO的火焰检测与识别
学长设计系统实现效果如下,精度不错!
2 课题背景
火灾事故的频发给社会造成不必要的财富损失以及人员伤亡,在当今这个社会消防也是收到越来越多的注视。火灾在发生初期是很容易控制的,因此,如何在对可能发生灾害的场所进行有效监控,使得潜在的损失危害降到最低是当前研究的重点内容。传统的探测器有较大的局限性,感温、感烟的探测器的探测灵敏度相对争分夺秒的灾情控制来说有着时间上的不足,而且户外场所的适用性大大降低。随着计算机视觉的发展,基于深度学习的图像处理技术已经愈发成熟并且广泛应用在当今社会的许多方面,其在人脸识别、安防、医疗、军事等领域已经有相当一段时间的实际应用,在其他领域也展现出跟广阔的前景。利用深度学习图像处理技术对火灾场景下火焰的特征学习、训练神经网络模型自动识别火焰,这项技术可以对具有监控摄像头场景下的火灾火焰进行自动、快速、准确识别并设置预警装置,从而在火灾发生的初期及时响应,赢得更多的时间,把损失降到最低。
3 卷积神经网络
受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
3.1 卷积层
卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
3.2 池化层
池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
3.3 激活函数:
激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体
3.4 全连接层
在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。
3.5 使用tensorflow中keras模块实现卷积神经网络
class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32, # 卷积层神经元(卷积核)数目kernel_size=[5, 5], # 感受野大小padding='same', # padding策略(vaild 或 same)activation=tf.nn.relu # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs) # [batch_size, 28, 28, 32]x = self.pool1(x) # [batch_size, 14, 14, 32]x = self.conv2(x) # [batch_size, 14, 14, 64]x = self.pool2(x) # [batch_size, 7, 7, 64]x = self.flatten(x) # [batch_size, 7 * 7 * 64]x = self.dense1(x) # [batch_size, 1024]x = self.dense2(x) # [batch_size, 10]output = tf.nn.softmax(x)return output
4 YOLOV5
我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。
目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。
YOLOv5有4个版本性能如图所示:
4.1 网络架构图
YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:
4.2 输入端
在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
- Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
4.3 基准网络
融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
4.4 Neck网络
在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。
FPN+PAN的结构
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。
FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。
4.5 Head输出层
输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。
对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:
①==>40×40×255
②==>20×20×255③==>10×10×255
-
相关代码
class Detect(nn.Module):stride = None # strides computed during buildonnx_dynamic = False # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layersuper().__init__()self.nc = nc # number of classesself.no = nc + 5 # number of outputs per anchorself.nl = len(anchors) # number of detection layersself.na = len(anchors[0]) // 2 # number of anchorsself.grid = [torch.zeros(1)] * self.nl # init gridself.anchor_grid = [torch.zeros(1)] * self.nl # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output convself.inplace = inplace # use in-place ops (e.g. slice assignment)def forward(self, x):z = [] # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i]) # convbs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training: # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # whelse: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
5 数据集准备
由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。
深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。
考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。
5.1 数据标注简介
通过pip指令即可安装
pip install labelimg
在命令行中输入labelimg即可打开
打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo
点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok
5.2 数据保存
点击save,保存txt。
打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。
6 模型训练
预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。
6.1 修改数据配置文件
修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为fire.yaml。
打开这个文件夹修改其中的参数,需要检测的类别数,我这里是识别有无火焰,所以这里填写2;最后箭头4中填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。
6.2 修改模型配置文件
由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名
打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。
至此,相应的配置参数就修改好了。
目前支持的模型种类如下所示:
6.3 开始训练模型
如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。
然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
至此,就可以运行train.py函数训练自己的模型了。
训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
7 实现效果
我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI
#部分代码from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_mask(object):def setupUi(self, Win_mask):Win_mask.setObjectName("Win_mask")Win_mask.resize(1107, 868)Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n""ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_mask)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))QtCore.QMetaObject.connectSlotsByName(Win_mask)
7.1图片效果
7.2 视频效果
7.3 摄像头实时效果
8 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
计算机竞赛 深度学习 python opencv 火焰检测识别
文章目录 0 前言1 基于YOLO的火焰检测与识别2 课题背景3 卷积神经网络3.1 卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV54.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 数据集准备5.1 数…...
Intellij idea 2023 年下载、安装教程、亲测可用
文章目录 1 下载与安装IDEA2 常用设置设置 Java JDK 版本自动导入包、移除包IDEA 自动生成 author 注释签名java.io.File 类无法自动提示导入?高亮显示与选中字符串相同的内容IDEA 配置 MavenIDEA 连接 Mysql 数据库 3 参考文章 1 下载与安装IDEA 首先先到官网下载…...
AI文本创作在百度App发文的实践
作者 | 内容生态端团队 导读 大语言模型(LLM)指包含数百亿(或更多)参数的语言模型,这些模型通常在大规模数据集上进行训练,以提高其性能和泛化能力。在内容创作工具接入文心一言AI能力后,可以为…...
Kafka 集群与可靠性
文章目录 Kafka集群的目标Kafka集群规模如何预估Kafka集群搭建实战Kafka集群原理成员关系与控制器集群工作机制replication-factor参数auto.leader.rebalance.enable参数 集群消息生产可靠的生产者ISR(In-sync Replicas)使用ISR方案的原因ISR相关配置说明…...
【刷题】蓝桥杯
蓝桥杯2023年第十四届省赛真题-平方差 - C语言网 (dotcpp.com) 初步想法,x y2 − z2(yz)(y-z) 即xa*b,ayz,by-z 2yab 即ab是2的倍数就好了。 即x存在两个因数之和为偶数就能满足条件。 但时间是(r-l)*x&am…...
C++入门及简单例子_4
1. 类和对象: #include <iostream> // 包含输入输出流库的头文件class Rectangle { // 定义名为Rectangle的类 private: // 私有成员变量部分double length; // 长度double width; // 宽度public: // 公有成员函数部分Rectangle(double len, double w…...
成集云 | 用友U8集成聚水潭ERP(用友U8主管库存)| 解决方案
源系统成集云目标系统 方案介绍 用友U8是一套企业级的解决方案,可满足不同的制造、商务模式下,不同运营模式下的企业经营管理。它全面集成了财务、生产制造及供应链的成熟应用,并延伸客户管理至客户关系管理(CRM)&am…...
提升网站效率与SEO优化:ZBlog插件集成解决方案
在创建和管理网站的过程中,使用合适的工具和插件可以大幅提升效率,并改善搜索引擎优化(SEO)结果。ZBlog插件是为ZBlogCMS设计的一组工具,它们帮助网站管理员轻松地满足各种需求,从采集内容到发布、推送和SE…...
C语言的编译过程详解
当我们编译C程序时会发生什么?编译过程中的组件有哪些,编译执行过程是什么样的? 什么是编译 C语言的编译过程就是把我们可以理解的高级语言代码转换为计算机可以理解的机器代码的过程,其实就是一个翻译的过程。 …...
无人机航测没信号?北斗卫星来解决
无人机航测是利用无人机进行地理信息的采集和处理的航测方式。相比传统的航测手段,无人机航测具备更高的灵活性、更低的成本和更广阔的适应性。无人机航测可以应用于土地测绘、农业植保、城市规划、自然资源调查等多个领域,极大地提高了测绘的效率和准确…...
Vue 03 数据绑定
Vue中有2种数据绑定的方式: 1.单向绑定(v-bind): 数据只能从data流向页面。 2.双向绑定(v-model): 数据不仅能从data流向页面,还可以从页面流向data。 备注: 1.双向绑定一般都应用在表单类元素上(如&am…...
#循循渐进学51单片机#步进电机与蜂鸣器#not.8
1、能够理解清楚单片机IO口的结构。 2)t1相当于PnP三级管,t2相当于npn三极管 3) 强推挽io具有较强的驱动能力,电流输出能力很强。 2、能够看懂上下拉电阻的电路应用,并且熟练使用上下拉电阻。 3、理解28BYJ-48减速步进电机的工作…...
计算存储是不是智算时代的杀手锏?
想象一下,在一个繁忙的数据中心里,有一家大型互联网公司叫做“数据中心的故事”。这家公司一直在使用传统的CPU架构来处理海量数据。但是随着数据量的不断增长,CPU架构遇到了很多问题和瓶颈,这让“数据中心的故事”感到非常苦恼。…...
西门子S7-1200F或1500F系列安全PLC的组态步骤和基础编程(二)
西门子S7-1200F或1500F系列安全PLC的组态步骤和基础编程(二) 上一次和大家分享了组态相关的重要内容,具体可以参考以下链接中的内容: 西门子S7-1200F或1500F系列安全PLC的组态步骤和基础编程(一) 本次继续和大家分享关于安全PLC基础编程的相关内容: 如下图所示,在左侧的…...
【Spring Boot】Spring Boot中的简单查询
前面介绍了在Spring Boot项目中集成JPA框架,实现数据的增、删、改、查等功能。Spring Data JPA的使用非常简单,只需继承JpaRepository即可实现完整的数据操作方法,无须任何数据访问层和SQL语句。JPA除了这些功能和优势之外,还有非…...
Transformer 01(自注意机制Self-attention)
一、Self-attention [台大李宏毅] 1.1 向量序列的输入 一个序列作为输入: 多个向量输入举例: 一个句子: 声音信号: 图: 1.2 输出 二、Sequence labeling 输入与输出一样多:Sequence labeling 窗口开的…...
交流共享,共筑智算底座丨九州未来受邀出席英特尔线下沙龙
随着AI技术的升级迭代、生成式AI模型智能化水平的持续提升,AIGC加速向多种场景渗透,AIGC迎来应用爆发期,有望实现且跨越更多领域的融合,形成新的应用场景和解决方案,持续推动数字技术的创新与应用,助力各行…...
【EI会议信息】第五届土木建筑与城市工程国际学术会议(ICCAUE 2023)
第五届土木建筑与城市工程国际学术会议(ICCAUE 2023) 2023 5th International Conference on Civil Architecture and Urban Engineering (ICCAUE 2023) 第五届土木建筑与城市工程国际学术会议(ICCAUE 2023)由天津大学主办&…...
上海亚商投顾:沪指震荡反弹 汽车产业链全天强势
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 大小指数昨日集体反弹,沪指3100点失而复得,创业板指一度涨超1.5%,随后涨幅…...
【Python深度学习】深度学习入门介绍
引言 深度学习是人工智能领域中最受关注和研究的子领域之一,它在计算机视觉、自然语言处理、语音识别、推荐系统等各个领域都有广泛的应用。本文将详细介绍深度学习的发展历史、不同类型、应用领域以及未来发展前景。 1、深度学习的发展历史 深度学习的起源可以追溯…...
【Linux系统编程】进程概念与基本创建
文章目录 1. 进程的概念2. 进程描述—PCB3. task_struct—PCB的一种4. task_ struct内容分类5. 查看进程 这篇文章我们来学习下一个概念——进程 1. 进程的概念 那什么是进程呢,我们该如何理解它呢? 如果我们打开电脑的任务管理: 我们看到这…...
webpack:详解CopyWebpackPlugin,复制的同时修改文件内容
摘要 CopyWebpackPlugin 是一个强大的 Webpack 插件,用于将文件从源目录复制到构建目录。在本文中,我们将探讨 CopyWebpackPlugin 的一些常用 API,并提供示例代码。 在构建 Web 应用程序时,通常需要将一些静态文件(如…...
Twin-Builder—系统级多物理域数字孪生平台
Twin Builder是ANSYS公司系统仿真业务的核心产品,是一款跨学科多领域系统仿真软件和数字孪生平台。能够实现复杂系统的建模、仿真和验证,基于IIoT物联网平台对数字孪生体进行集成、部署与运行,在完成复杂系统功能、性能的验证和优化的同时&am…...
用selenium和xpath定位元素并获取属性值以及str字符型转json型
页面html如图所示: 要使用xpath定位这个div元素,并且获取其属性data-config的内容值。 from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.options import Optionshost127.0.0.1 port10808 …...
基于Java的电影院管理系统设计与实现
前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 👇🏻…...
Linux Static Key原理与应用
文章目录 背景1. static-key的使用方法1.1. static-key定义1.2 初始化1.3 条件判断1.4 修改判断条件 2、示例代码参考链接 背景 内核中有很多判断条件在正常情况下的结果都是固定的,除非极其罕见的场景才会改变,通常单个的这种判断的代价很低可以忽略&a…...
linux ssh 禁止指定用户通过ssh登录
Linux 禁止用户或 IP通过 SSH 登录 限制用户 SSH 登录 1.只允许指定用户进行登录(白名单): 在 /etc/ssh/sshd_config 配置文件中设置 AllowUsers 选项,(配置完成需要重启 SSHD 服务)格式如下:…...
快速学习Netty
Netty框架探索:助力高效网络编程 一、Netty是个啥?二、“Hello World”服务器端实现(Server)客户端实现(Client)思考🤔 三、Netty的核心组件EventLoopChannelChannelPipelineChannelHandlerByte…...
对类和对象的详细解析
目录 1.类的构成 2.this指针 3.C类里面的静态成员 3.1 类里面的静态成员函数 3.2 类里面的静态成员变量 静态成员变量的特点 共享性 存储位置 生命周期 访问权限 如何初始化? 构造函数 1.类的构成 public修饰的成员在类外可以直接被访问 private和protecte…...
matlab 间接平差法拟合二维圆
目录 一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。爬虫自重。 一、算法原理 圆的方程为: ( x - x 0 )...
用flash做网站超链接/网络营销服务外包
题目描述 多多进幼儿园了,今天报名了。只有今晚可以好好放松一下了(以后上了学后会很忙)。她的叔叔决定给他买一些动画片DVD晚上看。可是爷爷规定他们只能在一定的时间段L看完。(因为叔叔还要搞NOIP不能太早陪多多看碟,…...
11电影网/北京自动seo
AOP是什么? AOP是OOP的延续,Aspect Oriented Programming的缩写,即面向方面编程。AOP是GoF设计模式的延续,设计模式追求的是调用者和被调用者之间的解耦,AOP也是这种目标的一 种实现。 案例:在应用程序中…...
英山县住房和城乡建设局网站/浏览器下载安装2023版本
Liunx要查找某个文件,但不知道放在哪里,可以通过下面命令来查找:(1)which 查看可执行文件的位置(2)whereis 查看文件的位置(3)locate 配合数据库查看文件位置(…...
学做旗袍衣服的网站/指定关键词seo报价
Time Limit: 1 second Memory Limit: 128 MB 【问题描述】 N个数排成一排,你可以任意选择连续的若干个数,算出它们的和。问该如何选择才能使得和的绝对值最小。如:N8时,8个数如下:1 2 3 4 5 6 7 8-20 90 -30 -20 80 -70 -60 125如…...
html5网站搭建/电脑优化大师有用吗
作者:老K玩代码来源:toutiao.com/i6882755471015576072Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化。…...
手机网站开发隐藏网址/网页设计费用报价
现在企业正常需要考虑两种类型的云计算,公有云和私有云。人们自然需要一些术语来描述公共云和私有云之间的应用程序和数据传输,并将此架构定义为混合云。尽管公共云和私有云独立运行,但这种数据共享可以通过使用加密连接来实现。这种加密的高…...