别再纠结线程池池大小、线程数量了,哪有什么固定公式 | 京东云技术团队
可能很多人都看到过一个线程数设置的理论:
-
CPU 密集型的程序 - 核心数 + 1
-
I/O 密集型的程序 - 核心数 * 2
不会吧,不会吧,真的有人按照这个理论规划线程数?
线程数和CPU利用率的小测试
抛开一些操作系统,计算机原理不谈,说一个基本的理论(不用纠结是否严谨,只为好理解):一个CPU核心,单位时间内只能执行一个线程的指令
那么理论上,我一个线程只需要不停的执行指令,就可以跑满一个核心的利用率。
来写个死循环空跑的例子验证一下:
测试环境:AMD Ryzen 5 3600, 6 - Core, 12 - Threads
public class CPUUtilizationTest {public static void main(String[] args) {//死循环,什么都不做while (true){}}
}
运行这个例子后,来看看现在CPU的利用率:
从图上可以看到,我的3号核心利用率已经被跑满了
那基于上面的理论,我多开几个线程试试呢?
public class CPUUtilizationTest {public static void main(String[] args) {for (int j = 0; j < 6; j++) {new Thread(new Runnable() {@Overridepublic void run() {while (true){}}}).start();}}
}
此时再看CPU利用率,1/2/5/7/9/11 几个核心的利用率已经被跑满:
那如果开12个线程呢,是不是会把所有核心的利用率都跑满?答案一定是会的
如果此时我把上面例子的线程数继续增加到24个线程,会出现什么结果呢?
从上图可以看到,CPU利用率和上一步一样,还是所有核心100%,不过此时负载已经从11.x增加到了22.x(load average解释参考https://scoutapm.com/blog/understanding-load-averages),说明此时CPU更繁忙,线程的任务无法及时执行。
现代CPU基本都是多核心的,比如我这里测试用的AMD 3600,6核心12线程(超线程),我们可以简单的认为它就是12核心CPU。那么我这个CPU就可以同时做12件事,互不打扰。
如果要执行的线程大于核心数,那么就需要通过操作系统的调度了。操作系统给每个线程分配CPU时间片资源,然后不停的切换,从而实现“并行”执行的效果。
但是这样真的更快吗?从上面的例子可以看出,一个线程就可以把一个核心的利用率跑满。如果每个线程都很“霸道”,不停的执行指令,不给CPU空闲的时间,并且同时执行的线程数大于CPU的核心数,就会导致操作系统更频繁的执行切换线程执行,以确保每个线程都可以得到执行。
不过切换是有代价的,每次切换会伴随着寄存器数据更新,内存页表更新等操作。虽然一次切换的代价和I/O操作比起来微不足道,但如果线程过多,线程切换的过于频繁,甚至在单位时间内切换的耗时已经大于程序执行的时间,就会导致CPU资源过多的浪费在上下文切换上,而不是在执行程序,得不偿失。
上面死循环空跑的例子,有点过于极端了,正常情况下不太可能有这种程序。
大多程序在运行时都会有一些 I/O操作,可能是读写文件,网络收发报文等,这些 I/O 操作在进行时时需要等待反馈的。比如网络读写时,需要等待报文发送或者接收到,在这个等待过程中,线程是等待状态,CPU没有工作。此时操作系统就会调度CPU去执行其他线程的指令,这样就完美利用了CPU这段空闲期,提高了CPU的利用率。
上面的例子中,程序不停的循环什么都不做,CPU要不停的执行指令,几乎没有啥空闲的时间。如果插入一段I/O操作呢,I/O 操作期间 CPU是空闲状态,CPU的利用率会怎么样呢?先看看单线程下的结果:
public class CPUUtilizationTest {public static void main(String[] args) throws InterruptedException {for (int n = 0; n < 1; n++) {new Thread(new Runnable() {@Overridepublic void run() {while (true){//每次空循环 1亿 次后,sleep 50ms,模拟 I/O等待、切换for (int i = 0; i < 100_000_000l; i++) { }try {Thread.sleep(50);}catch (InterruptedException e) {e.printStackTrace();}}}}).start();}}
}
哇,唯一有利用率的9号核心,利用率也才50%,和前面没有sleep的100%相比,已经低了一半了。现在把线程数调整到12个看看:
单个核心的利用率60左右,和刚才的单线程结果差距不大,还没有把CPU利用率跑满,现在将线程数增加到18:
此时单核心利用率,已经接近100%了。由此可见,当线程中有 I/O 等操作不占用CPU资源时,操作系统可以调度CPU可以同时执行更多的线程。
现在将I/O事件的频率调高看看呢,把循环次数减到一半,50_000_000,同样是18个线程:
此时每个核心的利用率,大概只有70%左右了。
线程数和CPU利用率的小总结
上面的例子,只是辅助,为了更好的理解线程数/程序行为/CPU状态的关系,来简单总结一下:
-
一个极端的线程(不停执行“计算”型操作时),就可以把单个核心的利用率跑满,多核心CPU最多只能同时执行等于核心数的“极端”线程数
-
如果每个线程都这么“极端”,且同时执行的线程数超过核心数,会导致不必要的切换,造成负载过高,只会让执行更慢
-
I/O 等暂停类操作时,CPU处于空闲状态,操作系统调度CPU执行其他线程,可以提高CPU利用率,同时执行更多的线程
-
I/O 事件的频率频率越高,或者等待/暂停时间越长,CPU的空闲时间也就更长,利用率越低,操作系统可以调度CPU执行更多的线程
线程数规划的公式
前面的铺垫,都是为了帮助理解,现在来看看书本上的定义。《Java 并发编程实战》介绍了一个线程数计算的公式:
如果希望程序跑到CPU的目标利用率,需要的线程数公式为:
公式很清晰,现在来带入上面的例子试试看:
如果我期望目标利用率为90%(多核90),那么需要的线程数为:
核心数12 * 利用率0.9 * (1 + 50(sleep时间)/50(循环50_000_000耗时)) ≈ 22
现在把线程数调到22,看看结果:
现在CPU利用率大概80+,和预期比较接近了,由于线程数过多,还有些上下文切换的开销,再加上测试用例不够严谨,所以实际利用率低一些也正常。
把公式变个形,还可以通过线程数来计算CPU利用率:
线程数22 / (核心数12 * (1 + 50(sleep时间)/50(循环50_000_000耗时))) ≈ 0.9
虽然公式很好,但在真实的程序中,一般很难获得准确的等待时间和计算时间,因为程序很复杂,不只是“计算”。一段代码中会有很多的内存读写,计算,I/O 等复合操作,精确的获取这两个指标很难,所以光靠公式计算线程数过于理想化。
真实程序中的线程数
那么在实际的程序中,或者说一些Java的业务系统中,线程数(线程池大小)规划多少合适呢?
先说结论:没有固定答案,先设定预期,比如我期望的CPU利用率在多少,负载在多少,GC频率多少之类的指标后,再通过测试不断的调整到一个合理的线程数
比如一个普通的,SpringBoot 为基础的业务系统,默认Tomcat容器+HikariCP连接池+G1回收器,如果此时项目中也需要一个业务场景的多线程(或者线程池)来异步/并行执行业务流程。
此时我按照上面的公式来规划线程数的话,误差一定会很大。因为此时这台主机上,已经有很多运行中的线程了,Tomcat有自己的线程池,HikariCP也有自己的后台线程,JVM也有一些编译的线程,连G1都有自己的后台线程。这些线程也是运行在当前进程、当前主机上的,也会占用CPU的资源。
所以受环境干扰下,单靠公式很难准确的规划线程数,一定要通过测试来验证。
流程一般是这样:
-
分析当前主机上,有没有其他进程干扰
-
分析当前JVM进程上,有没有其他运行中或可能运行的线程
-
设定目标
-
目标CPU利用率 - 我最高能容忍我的CPU飙到多少?
-
目标GC频率/暂停时间 - 多线程执行后,GC频率会增高,最大能容忍到什么频率,每次暂停时间多少?
-
执行效率 - 比如批处理时,我单位时间内要开多少线程才能及时处理完毕
-
……
-
-
梳理链路关键点,是否有卡脖子的点,因为如果线程数过多,链路上某些节点资源有限可能会导致大量的线程在等待资源(比如三方接口限流,连接池数量有限,中间件压力过大无法支撑等)
-
不断的增加/减少线程数来测试,按最高的要求去测试,最终获得一个“满足要求”的线程数**
而且而且而且!不同场景下的线程数理念也有所不同:
-
Tomcat中的maxThreads,在Blocking I/O和No-Blocking I/O下就不一样
-
Dubbo 默认还是单连接呢,也有I/O线程(池)和业务线程(池)的区分,I/O线程一般不是瓶颈,所以不必太多,但业务线程很容易称为瓶颈
-
Redis 6.0以后也是多线程了,不过它只是I/O 多线程,“业务”处理还是单线程
所以,不要纠结设置多少线程了。没有标准答案,一定要结合场景,带着目标,通过测试去找到一个最合适的线程数。
可能还有同学可能会有疑问:“我们系统也没啥压力,不需要那么合适的线程数,只是一个简单的异步场景,不影响系统其他功能就可以”
很正常,很多的内部业务系统,并不需要啥性能,稳定好用符合需求就可以了。那么我的推荐的线程数是:CPU核心数
附录
Java 获取CPU核心数
Runtime.getRuntime().availableProcessors()//获取逻辑核心数,如6核心12线程,那么返回的是12
Linux 获取CPU核心数
# 总核数 = 物理CPU个数 X 每颗物理CPU的核数
# 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数# 查看物理CPU个数
cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l# 查看每个物理CPU中core的个数(即核数)
cat /proc/cpuinfo| grep "cpu cores"| uniq# 查看逻辑CPU的个数
cat /proc/cpuinfo| grep "processor"| wc -l
如果我的文章对您有帮助,请点赞/收藏/关注鼓励支持一下吧❤❤❤❤❤❤
作者:京东保险 蒋信
来源:京东云开发者社区 转载请注明来源
相关文章:

别再纠结线程池池大小、线程数量了,哪有什么固定公式 | 京东云技术团队
可能很多人都看到过一个线程数设置的理论: CPU 密集型的程序 - 核心数 1 I/O 密集型的程序 - 核心数 * 2 不会吧,不会吧,真的有人按照这个理论规划线程数? 线程数和CPU利用率的小测试 抛开一些操作系统,计算机原…...

Redis 数据一致性方案的分析与研究
点击下方关注我,然后右上角点击...“设为星标”,就能第一时间收到更新推送啦~~~ 一般的业务场景都是读多写少的,当客户端的请求太多,对数据库的压力越来越大,引入缓存来降低数据库的压力是必然选择,目前业内…...

【网络安全】黑客自学笔记
1️⃣前言 🚀作为一个合格的网络安全工程师,应该做到攻守兼备,毕竟知己知彼,才能百战百胜。 计算机各领域的知识水平决定你渗透水平的上限🚀 【1】比如:你编程水平高,那你在代码审计的时候就会比…...
深入解析Perlin Simplex噪声函数:在C++中构建现代、高效、免费的3D图形背景
引言 在计算机图形中,噪声是一个经常被讨论的话题。无论是为了制造自然的纹理,还是为了模拟复杂的现实世界现象,噪声函数都在其中起着关键作用。而在众多噪声函数中,Perlin Simplex 噪声无疑是最受欢迎的一种。其原因不仅在于其干…...
【计算机辅助蛋白质结构分析、分子对接、片段药物设计技术与应用】
第一天 上午 生物分子互作基础 1.生物分子相互作用研究方法 1.1蛋白-小分子、蛋白-蛋白相互作用原理 1.2 分子对接研究生物分子相互作用 1.3 蛋白蛋白对接研究分子相互作用 蛋白数据库 1. PDB 数据库介绍 1.1 PDB蛋白数据库功能 1.2 PDB蛋白数据可获取资源 1.3 PDB蛋白数据库对…...

免费开箱即用微鳄售后工单管理系统
编者按:本文介绍基于天翎MyApps低代码平台开发的微鳄售后工单管理系统, 引入低代码平台可以帮助企业快速搭建和部署售后工单管理系统, 以工作流作为支撑,在线完成各环节数据审批,解决售后 工单 服务的全生命周期过程管…...

vant 组件库的基本使用
文章目录 vant组件库1、什么是组件库2、vant组件 全部导入 和 按需导入的区别3、全部导入的使用步骤:4、按需导入的使用步骤:5、封装vant文件包 vant组件库 该项目将使用到vant-ui组件库,这里的目标就是认识他,铺垫知识 1、什么…...

HTML常用基本元素总结
<!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title> biao qian</title> </head> <body><h1>这是标题1</h1> <h2>这是标题2</h2> <h3>这是标题3</h3><p> 这…...

msvcp140.dll重新安装的解决方法是什么?(最新方法)
msvcp140.dll 是 Microsoft Visual C Redistributable 的一个动态链接库文件,它包含了 C 运行时库的一些函数和类,对于许多应用程序和游戏来说都是必需的。如果您的系统中缺失了这个文件,可能会导致程序无法正常运行。下面我们将分享修复 msv…...

USI-0002 SDI-1624 HONEYWELL ,用于工业和物流4.0的人工智能
USI-0002 SDI-1624 HONEYWELL ,用于工业和物流4.0的人工智能 生产、仓库、运输——生产、储存、分拣或包装货物的地方,也是提货的地方。这意味着几个单独的货物从存储单元如箱子或纸盒中取出并重新组装。有了FLAIROP(机器人采摘的联邦学习)项目费斯托…...

计算机竞赛 深度学习 python opencv 火焰检测识别
文章目录 0 前言1 基于YOLO的火焰检测与识别2 课题背景3 卷积神经网络3.1 卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV54.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 数据集准备5.1 数…...

Intellij idea 2023 年下载、安装教程、亲测可用
文章目录 1 下载与安装IDEA2 常用设置设置 Java JDK 版本自动导入包、移除包IDEA 自动生成 author 注释签名java.io.File 类无法自动提示导入?高亮显示与选中字符串相同的内容IDEA 配置 MavenIDEA 连接 Mysql 数据库 3 参考文章 1 下载与安装IDEA 首先先到官网下载…...

AI文本创作在百度App发文的实践
作者 | 内容生态端团队 导读 大语言模型(LLM)指包含数百亿(或更多)参数的语言模型,这些模型通常在大规模数据集上进行训练,以提高其性能和泛化能力。在内容创作工具接入文心一言AI能力后,可以为…...

Kafka 集群与可靠性
文章目录 Kafka集群的目标Kafka集群规模如何预估Kafka集群搭建实战Kafka集群原理成员关系与控制器集群工作机制replication-factor参数auto.leader.rebalance.enable参数 集群消息生产可靠的生产者ISR(In-sync Replicas)使用ISR方案的原因ISR相关配置说明…...

【刷题】蓝桥杯
蓝桥杯2023年第十四届省赛真题-平方差 - C语言网 (dotcpp.com) 初步想法,x y2 − z2(yz)(y-z) 即xa*b,ayz,by-z 2yab 即ab是2的倍数就好了。 即x存在两个因数之和为偶数就能满足条件。 但时间是(r-l)*x&am…...
C++入门及简单例子_4
1. 类和对象: #include <iostream> // 包含输入输出流库的头文件class Rectangle { // 定义名为Rectangle的类 private: // 私有成员变量部分double length; // 长度double width; // 宽度public: // 公有成员函数部分Rectangle(double len, double w…...

成集云 | 用友U8集成聚水潭ERP(用友U8主管库存)| 解决方案
源系统成集云目标系统 方案介绍 用友U8是一套企业级的解决方案,可满足不同的制造、商务模式下,不同运营模式下的企业经营管理。它全面集成了财务、生产制造及供应链的成熟应用,并延伸客户管理至客户关系管理(CRM)&am…...

提升网站效率与SEO优化:ZBlog插件集成解决方案
在创建和管理网站的过程中,使用合适的工具和插件可以大幅提升效率,并改善搜索引擎优化(SEO)结果。ZBlog插件是为ZBlogCMS设计的一组工具,它们帮助网站管理员轻松地满足各种需求,从采集内容到发布、推送和SE…...

C语言的编译过程详解
当我们编译C程序时会发生什么?编译过程中的组件有哪些,编译执行过程是什么样的? 什么是编译 C语言的编译过程就是把我们可以理解的高级语言代码转换为计算机可以理解的机器代码的过程,其实就是一个翻译的过程。 …...

无人机航测没信号?北斗卫星来解决
无人机航测是利用无人机进行地理信息的采集和处理的航测方式。相比传统的航测手段,无人机航测具备更高的灵活性、更低的成本和更广阔的适应性。无人机航测可以应用于土地测绘、农业植保、城市规划、自然资源调查等多个领域,极大地提高了测绘的效率和准确…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...