当前位置: 首页 > news >正文

PyTorch实战:卷积神经网络详解+Python实现卷积神经网络Cifar10彩色图片分类

目录

前言

一、卷积神经网络概述

二、卷积神经网络特点

卷积运算

单通道,二维卷积运算示例

单通道,二维,带偏置的卷积示例

带填充的单通道,二维卷积运算示例

Valid卷积

Same卷积

多通道卷积计算

1.局部感知域

2.参数共享

3.池化层

4.层次化提取

 三、卷积网络组成结构


前言

PyTorch可以说是三大主流框架中最适合初学者学习的了,相较于其他主流框架,PyTorch的简单易用性使其成为初学者们的首选。这样我想要强调的一点是,框架可以类比为编程语言,仅为我们实现项目效果的工具,也就是我们造车使用的轮子,我们重点需要的是理解如何使用Torch去实现功能而不要过度在意轮子是要怎么做出来的,那样会牵扯我们太多学习时间。以后就出一系列专门细解深度学习框架的文章,但是那是较后期我们对深度学习的理论知识和实践操作都比较熟悉才好开始学习,现阶段我们最需要的是学会如何使用这些工具。

深度学习的内容不是那么好掌握的,包含大量的数学理论知识以及大量的计算公式原理需要推理。且如果不进行实际操作很难够理解我们写的代码究极在神经网络计算框架中代表什么作用。不过我会尽可能将知识简化,转换为我们比较熟悉的内容,我将尽力让大家了解并熟悉神经网络框架,保证能够理解通畅以及推演顺利的条件之下,尽量不使用过多的数学公式和专业理论知识。以一篇文章快速了解并实现该算法,以效率最高的方式熟练这些知识。


博主专注数据建模四年,参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使用各类数学模型、机器学习和深度学习以及代码,每一篇文章都包含实战项目以及可运行代码。博主紧跟各类数模比赛,每场数模竞赛博主都会将最新的思路和代码写进此专栏以及详细思路和完全代码。希望有需求的小伙伴不要错过笔者精心打造的专栏:
一文速学-数学建模常用模型icon-default.png?t=N7T8https://blog.csdn.net/master_hunter/category_10967944.html


一、卷积神经网络概述

卷积神经网络(Convolutional Neural Network,简称CNN)是一种特殊的人工神经网络结构,它在图像识别、语音识别、自然语言处理等领域有着广泛的应用。CNN的特点在于其能够自动提取输入数据的特征,从而实现对输入数据的高效分类和识别。根据专栏阅读而到此部分的读者对神经网络基础都有很清晰的了解,普通的神经网络架构的基本功能还是存在很多可以优化的点。而卷积神经网络是一类包含卷积运算且具有深度结构的前馈神经网络,这里我们划重点卷积运算和深度结果,前馈神经网络也就是具有前向传播,没有循环和记忆功能的单向网络。那么只要认识到卷积运算和卷积神经网络的特殊性质就可以很好的区分普通前馈神经网络和卷积神经网络。

二、卷积神经网络特点

 卷积神经网络相对于普通神经网络在于以下四个特点:

  • 局部感知域:CNN的神经元只与输入数据的一小部分区域相连接,这使得CNN对数据的局部结构具有强大的敏感性,可以自动学习到图像的特征。
  • 参数共享:在CNN中,同一个卷积核(filter)在整个输入图像上滑动,共享权重和偏置。这减少了网络的参数量,提高了模型的泛化能力。
  • 池化层:通过池化层,CNN可以降低特征图的分辨率,减少计算量,同时保留主要的特征信息,提高了网络的抗噪能力和泛化能力。
  • 层次化特征提取:通过堆叠多层卷积层和池化层,网络可以逐级提取图像的抽象特征,从低级特征如边缘到高级特征如纹理、形状等。

卷积运算

我们以多个实例来理解卷积运算:

单通道,二维卷积运算示例

红色的方框圈中的数字和卷积核乘积再相加得到输出数据。

单通道,二维,带偏置的卷积示例

带偏置的计算是在上述乘积运算之后加上偏置。

带填充的单通道,二维卷积运算示例

对于以上实例填充边缘为0的向量,是因为在标准的卷积过程中,存在两个问题:

每次卷积运算后,图像就会缩小,在经历多次运算后,图像终会失去其形状,变为 1\times 1 的 “柱状”。

对于图像边缘的像素,其只被一个输出所触碰或者使用,但对于图像中间的像素,则会有多个卷积核与之重叠。所以那些在角落或者边缘区域的像素点在输出中采用较少,意味着卷积过程丢掉了图像边缘位置的许多信息。

对于这个问题,可以采用额外的 “假” 像素(通常值为 0, 因此经常使用的术语 ”零填充“ )填充边缘。这样,在滑动时的卷积核可以允许原始边缘像素位于其中心,同时延伸到边缘之外的假像素。假设填充的像素大小为 p ,则 n 就变成了 n+2p ,故其输出图像的尺寸为 \left \lfloor \frac{n+2p-f}{s} \right \rfloor +1。至于选择填充多少像素,通常有两个选择,分别叫做 Valid 卷积和 Same 卷积。

Valid卷积

Valid 卷积意味着不填充,如之前所述,图像会经历卷积运算后逐渐缩小,输出的图像尺寸即为上述公式:\left \lfloor \frac{n+2p-f}{s} \right \rfloor +1

Same卷积

Same卷积意味填充后,输出图像的尺寸与输入图像的尺寸相同,根据上述公式,令 \left \lfloor \frac{n+2p-f}{s} \right \rfloor +1=n,可得到p=\frac{(n-1)s-n+f}{2}。当 s=1 时,p=\frac{f-1}{2}。一般卷积核 f 的大小会选择一个奇数,如 3 \ 5 \ 7 等。主要因为:

  • 如果 f 是一个偶数,那么只能使用一些不对称填充。只有当 f 是奇数时,Same 卷积才会有自然的填充,即可以选择同样的数量填充四周。
  • 当卷积核 f 是奇数时,其只有一个中心点,在具体的程序实现过程中会便于指出卷积核的位置。

多通道卷积计算

多通道卷积会按通道进行输入数据和滤波器的卷积运算,并将结果相加, 从而得到输出

以上篇文章卷积神经网络对Cifar10图像的分类卷积运算的过程,整体网络计算架构为:

原图像(尺寸为32*32*3)分别和n5*5*3的卷积核(又名滤波器,filiter)进行卷积运算,得到n28*28*1的特征图(feature map),每个特征图分别添加不同的偏置(bias),具体为特征图中的每个元素 +\ b_n,对每个特征图添加激活函数 g(x),进行非线性运算,将这 n 个特征图依次叠加,得到最终的特征图(尺寸为 28\times 28 \times n)。

1.局部感知域

局部感知域指的是网络中的每一个神经元只对输入数据的一个局部区域进行感知,而不是整个输入数据。

 在卷积神经网络中,每个神经元的权重是共享的。这意味着在处理不同的输入位置时,使用的权重是相同的。这种权重共享使得网络对于平移不变性具有很强的适应能力。卷积操作只关注输入数据的局部区域,而非整个输入数据。这样可以减少网络的参数数量,降低计算复杂度。由于权重共享和稀疏连接的特性,卷积神经网络能够高效地处理大规模的输入数据,如高分辨率图像。通过卷积操作,网络可以逐步提取输入数据的局部特征,从低层到高层,逐步抽象和组合特征,形成对于整体特征的理解。

2.参数共享

卷积神经网络(Convolutional Neural Network,CNN)的参数共享是指在网络的不同位置使用相同的参数(权重和偏置)来处理输入数据的不同区域,这是卷积层的一个重要特点。

具体来说,卷积操作在处理输入数据时,会使用一个称为卷积核(filter)的小窗口,通过与输入数据的局部区域进行卷积运算来提取特征。而在整个输入数据上,使用的卷积核是相同的。这意味着网络的不同位置使用的权重是共享的。

这种参数共享有以下几个重要特点:

减少参数数量:由于同一个卷积核在不同位置共享,网络的参数数量大大减少。这降低了模型的复杂度,减少了过拟合的可能性。

增强模型的平移不变性:由于同一特征的卷积核在不同位置使用相同的权重,使得模型对输入数据的平移具有不变性,从而能够更好地处理平移变换后的数据。

提高计算效率:参数共享减少了计算量,因为不同位置使用相同的权重进行计算,避免了重复计算。

# 定义一个简单的卷积神经网络
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 定义一个卷积层,使用3个3x3的卷积核self.conv = nn.Conv2d(in_channels=1, out_channels=3, kernel_size=3)def forward(self, x):# 使用卷积操作处理输入数据x = self.conv(x)return x

 self.conv 是一个卷积层,它使用了3个3x3的卷积核进行卷积操作。无论输入数据的哪一个位置,这3个卷积核的参数都是相同的。

3.池化层

对于 28\times 28 \times n 的特征图,其池化过程仅需通过池化核对该特征图进行池化运算即可得到输出。

  在通过卷积获得了特征 (features) 之后,下一步我们希望利用这些特征去做分类。理论上讲,人们可以用所有提取得到的特征去训练分类器,但这样做会面临巨大计算量的挑战。并且容易出现过拟合 (over-fitting)。

池化层通过对特征图进行降维,减少了后续层的计算量,同时保留了重要的特征。卷积后的特征具有一种“静态性”的属性,意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。也就是说一张图片有多只鸟,在一个区域提取的鸟图像的特征在该图像的另一端鸟图像的特征也同样适用。与卷积层类似,池化操作也使用一个移动的窗口,但它的操作是简单的统计汇总(如最大值或平均值)。这些统计到的特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池化 (pooling)

import torch
import torch.nn as nn# 定义一个示例的特征图(假设通道数为3,高度为4,宽度为4)
feature_map = torch.randn(1, 3, 4, 4)  # 1表示batch size# 定义一个最大池化层,窗口大小为2x2,步幅为2
max_pooling_layer = nn.MaxPool2d(kernel_size=2, stride=2)# 应用最大池化层
output = max_pooling_layer(feature_map)# 输出的尺寸会缩小一半(因为窗口大小为2x2,步幅为2)
print(output.shape)

 

这样需要注意的是,池化操作是对每个通道分别进行的,不会改变通道的数量。池化层对于一定程度的平移、旋转、缩放等变化保持不变性,即使特征稍微移动也能被正确检测到,减少了特征图的维度,也减少了模型的参数数量,有助于减轻过拟合的问题。

4.层次化提取

根据以上的图例很容易明白CNN的的计算层次化,CNN 由多个卷积层和池化层组成,每一层都可以提取出不同层次的特征。前层主要提取低级特征(如边缘、纹理等),后层逐渐提取高级抽象的特征(如形状、对象等)。每一层的特征都是基于前一层的特征提取的,这样多层的叠加使得网络能够提取出更加复杂的特征。随着层次的增加,特征图的尺寸逐渐缩小,这减少了后续层的计算量。

 三、卷积网络组成结构

卷积神经网络(Convolutional Neural Network,CNN)的基本架构通常包括以下几种层:

输入层(Input Layer):接受原始数据输入,例如图像,其尺寸与输入图像的尺寸相匹配。

卷积层(Convolutional Layer):负责特征提取。卷积核在输入数据上滑动,计算每个位置的卷积,从而得到特征图。多个卷积核可以提取多种特征。通常会使用ReLU等激活函数来引入非线性。

池化层(Pooling Layer):减小特征图的尺寸,同时保留最重要的信息。常用的池化操作是最大池化和平均池化。

全连接层(Fully Connected Layer):将之前层次提取的特征进行扁平化,并通过全连接操作将其与输出层相连接。

输出层(Output Layer):根据任务的不同,可以是一个全连接层,也可以是一个Softmax层,用于分类问题。

批归一化层(Batch Normalization Layer):用于加速训练过程,提升模型的泛化性能。

Dropout层:在训练过程中随机断开一部分神经元,防止过拟合。

残差连接(Residual Connection):引入跳跃连接,可以在深层网络中减轻梯度消失问题。

卷积核(Kernel):卷积操作的核心部分,可以将其视为特征检测器。

 一个简单的卷积神经网络示例:

import torch
import torch.nn as nnclass SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)self.fc1 = nn.Linear(32 * 16 * 16, 512)self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 32 * 16 * 16)x = F.relu(self.fc1(x))x = self.fc2(x)return x# 创建网络实例
net = SimpleCNN()# 打印网络结构
print(net)

 其中包含两个卷积层、两个池化层和两个全连接层。

具体案例参考PyTorch实战:实现Cifar10彩色图片分类


相关文章:

PyTorch实战:卷积神经网络详解+Python实现卷积神经网络Cifar10彩色图片分类

目录 前言 一、卷积神经网络概述 二、卷积神经网络特点 卷积运算 单通道,二维卷积运算示例 单通道,二维,带偏置的卷积示例 带填充的单通道,二维卷积运算示例 Valid卷积 Same卷积 多通道卷积计算 1.局部感知域 2.参数共…...

MapRdeuce工作原理

hadoop - (三)通俗易懂地理解MapReduce的工作原理 - 个人文章 - SegmentFault 思否 MapReduce架构 MapReduce执行过程 Map和Reduce工作流程 (input) ->map-> ->combine-> ->reduce-> (output) Map: Reduce...

完整指南:使用JavaScript从零开始构建中国象棋游戏

引言 中国象棋,又被称为国际象棋,是一款起源于中国的古老棋类游戏。本文旨在为大家提供一个简单明了的步骤,教你如何使用JavaScript从零开始构建这款经典的棋类游戏。 1. 游戏简介 在中国象棋中,两方各有一军队,包括…...

PG-DBA培训19:PostgreSQL高可用集群项目实战之Patroni

一、风哥PG-DBA培训19:PostgreSQL高可用集群项目实战之Patroni 课程目标: 本课程由风哥发布的基于PostgreSQL数据库的系列课程,本课程属于PostgreSQL主从复制与高可用集群阶段之PostgreSQL高可用集群项目实战之Patroni,学完本课…...

数据库管理-第105期 安装Database Valut组件(20230919)

数据库管理-第105期 安装Database Valut组件(20230919) 之前无论是是EXPDP还是PDB中遇到的一些问题,其实都跟数据库的DV(Database Valut)组件有关,因为目标库没有安装DV导致启动时会出现问题。 1 DV/OLS …...

企望制造ERP系统RCE漏洞 复现

文章目录 企望制造ERP系统RCE漏洞 复现0x01 前言0x02 漏洞描述0x03 影响平台0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 企望制造ERP系统RCE漏洞 复现 0x01 前言 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播…...

【unity小技巧】Unity 存储存档保存——PlayerPrefs、JsonUtility和MySQL数据库的使用

文章目录 前言PlayerPrefs一、基本介绍二、Demo三、优缺点 JsonUtility一、基本使用二、Demo三、优缺点 Mysql(扩展)完结 前言 游戏存档不言而喻,是游戏设计中的重要元素,可以提高游戏的可玩性,为玩家提供更多的自由和…...

2023-9-22 滑雪

题目链接&#xff1a;滑雪 #include <cstring> #include <algorithm> #include <iostream>using namespace std;const int N 310;int n, m; int h[N][N]; int f[N][N];int dx[4] {-1, 0, 1, 0}, dy[4] {0, 1, 0, -1};int dp(int x, int y) {int &v f…...

基于Yolov8的工业小目标缺陷检测(6):多检测头结合小缺陷到大缺陷一网打尽的轻量级目标检测器GiraffeDet,暴力提升工业小目标缺陷检测能力

💡💡💡本文改进:多头检测器结合大小缺陷一网打尽的GiraffeDet,进一步提升处理低分辨率图像和小物体等更困难的检测能力。 多头检测器+ GiraffeDet | 亲测在工业小目标缺陷涨点明显,原始mAP@0.5 0.679提升至0.734 收录专栏: 💡💡💡深度学习工业缺陷检测 :h…...

exe文件运行后无输出直接闪退如何找解决办法

一.搜索栏搜事件查看器 二.点开windows日志下的应用程序 三.找到错误处 四.搜索异常代码 点开有错误的详细信息&#xff0c;直接用搜索引擎搜索这个异常代码能大致判断是什么问题&#xff0c;给了一个解决思路&#xff0c;不至于不知道到底哪里出了问题...

OpenHarmony应用开发—ArkUI组件集合

介绍 本示例为ArkUI中组件、通用、动画、全局方法的集合。 效果预览 使用说明&#xff1a; 1.点击组件、通用、动画、全局方法四个按钮或左右滑动切换不同视图。 2.点击二级导航&#xff08;如通用属性、通用事件等&#xff09;&#xff0c;若存在三级导航则展开三级导航&#…...

Linux(CentOS)安装msf

目录 一、安装MSF 1.1 在线安装 1.2 离线安装 二、安装Postgresql数据库 一、安装MSF 1.1 在线安装 需要挂梯子&#xff01;挂完梯子需要reboot重启&#xff0c;多试几次就可以&#xff0c;国内网络我试了很久都不行。没条件没梯子的看1.2离线安装 cd /opt curl https://ra…...

工作几年还是悟不懂自动化测试的意义

【软件测试面试突击班】如何逼自己一周刷完软件测试八股文教程&#xff0c;刷完面试就稳了&#xff0c;你也可以当高薪软件测试工程师&#xff08;自动化测试&#xff09; 有人问&#xff1a;自动化测试的成本高效果差&#xff0c;那么自动化测试的意义在哪呢&#xff1f; 我…...

Redis面试问题三什么是缓存雪崩怎么解决

定义 缓存雪崩是因为大量的key设置了同一过期时间的导致在同一时间类缓存同时过期&#xff0c;而这时因为请求过来已经没有缓存了&#xff0c;DB压力大数据库崩溃了。 解决方法 我可以在设置过期时间的时候加一个随机时间&#xff0c;在1-5分钟那样可以分散过期时间&#xf…...

【Unittest】自动化测试框架核心要素

【软件测试面试突击班】如何逼自己一周刷完软件测试八股文教程&#xff0c;刷完面试就稳了&#xff0c;你也可以当高薪软件测试工程师&#xff08;自动化测试&#xff09; 1、什么是Unittest框架&#xff1f; python自带一种单元测试框架 2、为什么使用UnitTest框架&#xff1…...

Hyperloglog

一&#xff0c;前言 在互联网行业中存在两个比较重要的指标&#xff1a;PV&#xff08;页面访问量&#xff09;和 UV&#xff08;用户访问量&#xff09; 如果有这样的一个业务&#xff1a; 统计PV&#xff0c;那么你会怎么做&#xff1f; 我们可以使用Redis的incr、incrby指…...

如何自动获取短信验证码?

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ 这篇文章通过解决实际项目开发中遇到的如何自动获取短信验证码的问题&#xff0c;进一步讲述在Java中如何使用正则。 Java中如何使用正则 Java中正则相关类位于java.util.r…...

Linux 本地 Docker Registry本地镜像仓库远程连接【内网穿透】

Linux 本地 Docker Registry本地镜像仓库远程连接 文章目录 Linux 本地 Docker Registry本地镜像仓库远程连接1. 部署Docker Registry2. 本地测试推送镜像3. Linux 安装cpolar4. 配置Docker Registry公网访问地址5. 公网远程推送Docker Registry6. 固定Docker Registry公网地址…...

基于Yolov8的工业小目标缺陷检测(4):SPD-Conv,低分辨率图像和小物体涨点明显

💡💡💡本文改进:SPD-Conv,处理低分辨率图像和小物体等更困难的任务时效果明显。 SPD-Conv | 亲测在工业小目标缺陷涨点明显,原始mAP@0.5 0.679提升至0.775 收录专栏: 💡💡💡深度学习工业缺陷检测 :http://t.csdn.cn/fVSgs ✨✨✨提供工业缺陷检测性能提升…...

平均精度(AP)

什么是平均精度(AP) 平均精度 (AP)并不是精度 (P)的平均值。 平均精度 (AP) 是按类别计算的。 mAP&#xff08;mean average precision&#xff09;是一个平均值&#xff0c;常用作目标检测中的检测精度指标mAP 指标通过对于一个平均目标来检测任务中多个目标所对应不同 AP&a…...

建议收藏《Verilog代码规范笔记_华为》(附下载)

华为verilog编程规范是坊间流传出来华为内部的资料&#xff0c;其贴合实际工作需要&#xff0c;是非常宝贵的资料&#xff0c;希望大家善存。至于其介绍&#xff0c;在此不再赘述&#xff0c;大家可看下图详细了解&#xff0c;感兴趣的可私信领取《Verilog代码规范笔记_华为》。…...

Nginx环境搭建、负载均衡测试

Nginx环境搭建、负载均衡测试 系统环境&#xff1a; win10&#xff0c;IDEA2020&#xff0c;JDK8 一、nginx环境搭建 1.ngxin下载 Nginx官网下载&#xff1a; http://nginx.org/en/download.html Nginx有三种版本&#xff0c;分别是Mainline version&#xff08;开发版&…...

软件工程知识总结梳理

&#x1f525;&#x1f525;宏夏Coding网站&#xff0c;致力于为编程学习者、互联网求职者提供最需要的内容&#xff01;网站内容包括求职秘籍&#xff0c;葵花宝典&#xff08;学习笔记&#xff09;&#xff0c;资源推荐等内容。在线阅读&#xff1a;https://hongxiac.com&…...

Mybatis自动映射Java对象 与 MySQL8后的JSON数据

文章目录 Mybatis自动映射Java对象 与 MySQL8后的JSON数据1.转化成为正常Json类型1.1 JsonTypeHander1.2 ListJsonTypeHandler 负责List<T> 类型1.3 实体类1.4 mapper1.5 测试类 2. 存储为携带类型的Json Mybatis自动映射Java对象 与 MySQL8后的JSON数据 1.转化成为正常…...

【JavaScript】深拷贝和浅拷贝

在 JavaScript 中&#xff0c;深拷贝&#xff08;Deep Copy&#xff09;和浅拷贝&#xff08;Shallow Copy&#xff09;是两种不同的对象复制方法&#xff0c;它们涉及到如何复制对象的属性以及如何处理对象内部的嵌套引用。以下是它们的解释&#xff1a; 浅拷贝&#xff08;S…...

【SLAM】10.纵观SLAM,对比方案和未来方向

"天下谁人配白衣” SLAM方案研究方向 SLAM方案 站在历史角度&#xff0c;看一下为SLAM的发展带来贡献的方案&#xff1a; 2007年—A.J.Davison—MonoSLAM 视觉SLAM的先驱&#xff0c;建立在EKF基础上&#xff0c;此前基本无法在线运行&#xff0c;意义较大&#xff1b;…...

PyTorch中DistributedDataParallel使用笔记

1. 基本概念 在使用DistributedDataParallel时有一些概率必须掌握 多机多卡含义world_size代表有几台机器&#xff0c;可以理解为几台服务器rank第几台机器&#xff0c;即第几个服务器local_rank某台机器中的第几块GPU 单机多卡含义world_size代表机器一共有几块GPUrank第几…...

前端面试的话术集锦第 18 篇博文——高频考点(HTTP协议 TLS协议)

这是记录前端面试的话术集锦第十八篇博文——高频考点(HTTP协议 & TLS协议),我会不断更新该博文。❗❗❗ 1. HTTP 请求中的内容 HTTP请求由三部分构成,分别为: 请求行 首部 实体 请求行大概长这样GET /images/logo.gif HTTP/1.,基本由请求方法、URL、协议版本组成,…...

SQL Server 数据库变成单个用户怎么办

参考技术A 1、首先我们打开SQL SERVER的管理控制台&#xff0c;找到一个要设置角色的用户。 2、下面我们将为这个用户赋予创建数据库的角色&#xff0c;我们先用这个用户登录管理工具看一下是否具有创建用户的权限。 3、进行数据库创建的时候&#xff0c;提示如下的错误&…...

错过成考报名,今年你还有这两种方式升学!

2023年广东成人高考已经报名结束啦 错过报名或没有抢到考位的同学不用伤心 你还有另外两个提升学历的机会 开放大学or小自考 今天一起来了解一下吧~ 什么是开放大学&#xff1f; 开放教育其实也就是开放大学&#xff0c;也就是我们所说的中央广播电视大学&#xff0c;现在…...

taobaoke plugin for wordpress/seo精华网站

Docker Container Commit 基于容器进行 Docker Image 制作1、Docker Image 制作方式2、Docker Container Commit 命令介绍2.1 Command Help & Usage2.2 Options3、示例&#xff1a;基于运行中的镜像创建一个 Docker Image3.1 运行一个新容器&#xff0c;镜像使用 busybox3.…...

网站建设需要经历什么步骤/优秀的网络搜索引擎营销案例

Pod控制器类型: ReplicationController Replicaset Replicaset:维持用户期望的pod副本数 标签选择器&#xff1a;以便选定由自己选定管理的pod副本 pod资源模板&#xff1a;完成pod资源的新建 特点&#xff1a;管理无状态的pod资源&#xff0c;精确反映用户所定义的目标数量…...

公安内网网站建设方案/京津冀协同发展

背景描述 由于想快速在服务器上部署一下spring boot的web应用&#xff0c;因此使用了java直接启动spring boot内置tomcat的方式来构建服务&#xff0c;实际上这也是spring boot的一个很大的亮点。 但是接着就遇到了一个很有意思的问题&#xff0c;在项目中使用了Thymeleaf作为模…...

泉州网站建设优化/种子搜索神器在线引擎

【BZOJ3924】幻想乡战略游戏&#xff08;动态点分治&#xff09; 题面 权限题。。。&#xff08;穷死我了&#xff09;洛谷 题解 考虑不修改 发现一个贪心的做法 假设当前放在当前位置 如果它有一个子树的兵的总数大于总数的一半 那么&#xff0c;放到那个子树的根节点上一定最…...

wordpress二级域名设置/传统营销与网络营销的整合方法

spring要与freemarker整合的话&#xff0c;需要两个包&#xff0c;一个是freemarker的jar包&#xff0c;另一个是spring-context-support的jar包。所以我们需要在taotao-item-web工程中确保对这两个jar包的依赖&#xff0c;如下所示。<dependency><groupId>org.spr…...

it培训机构怎么样/东莞seo推广机构帖子

MTK_4G平台MT6169射频开关RF_Switch对照表...