当前位置: 首页 > news >正文

极坐标和直角坐标的雅克比矩阵推导

我们经常需要在一些问题中研究坐标系的关系,这里讲讲最常见的极坐标和直角坐标的雅克比矩阵的推导。以二维坐标为例,三维坐标也是同理。

1. 直角坐标和极坐标

直角坐标表示为 ( x , y ) (x,y) (x,y),极坐标表示为 ( ρ , φ ) (\rho,\varphi) (ρ,φ),它们之间有如下的关系:
ρ 2 = x 2 + y 2 , φ = arctan ⁡ y x ; x = ρ cos ⁡ φ , y = ρ sin ⁡ φ \begin{aligned} \rho^2=x^2+y^2,\quad &\varphi=\arctan\frac{y}{x};\\ x=\rho\cos\varphi,\quad&y=\rho\sin\varphi \end{aligned} ρ2=x2+y2,x=ρcosφ,φ=arctanxy;y=ρsinφ

2. 向量之间的雅克比矩阵

向量X和向量Y的微分映射由雅克比矩阵来刻画,给定两个向量 x = ( x 1 , x 2 , ⋯ , x n ) T \mathbf{x}=(x_1,x_2,\cdots,x_n)^T x=(x1,x2,,xn)T y = ( y 1 , y 2 , ⋯ , y m ) T \mathbf{y}=(y_1,y_2,\cdots,y_m)^T y=(y1,y2,,ym)T

{ d x 1 = ∂ x 1 ∂ y 1 d y 1 + ∂ x 1 ∂ y 2 d y 2 + ⋯ + ∂ x 1 ∂ y m d y m d x 2 = ∂ x 2 ∂ y 1 d y 1 + ∂ x 2 ∂ y 2 d y 2 + ⋯ + ∂ x 2 ∂ y m d y m ⋮ d x n = ∂ x n ∂ y 1 d y 1 + ∂ x n ∂ y 2 d y 2 + ⋯ + ∂ x n ∂ y m d y m \begin{aligned} \begin{cases} \mathrm{d}x_1=\dfrac{\partial x_1}{\partial y_1}\mathrm{d}y_1+\dfrac{\partial x_1}{\partial y_2}\mathrm{d}y_2+\cdots+\dfrac{\partial x_1}{\partial y_m}\mathrm{d}y_m\\ \mathrm{d}x_2=\dfrac{\partial x_2}{\partial y_1}\mathrm{d}y_1+\dfrac{\partial x_2}{\partial y_2}\mathrm{d}y_2+\cdots+\dfrac{\partial x_2}{\partial y_m}\mathrm{d}y_m\\ \vdots\\ \mathrm{d}x_n=\dfrac{\partial x_n}{\partial y_1}\mathrm{d}y_1+\dfrac{\partial x_n}{\partial y_2}\mathrm{d}y_2+\cdots+\dfrac{\partial x_n}{\partial y_m}\mathrm{d}y_m\\ \end{cases} \end{aligned} dx1=y1x1dy1+y2x1dy2++ymx1dymdx2=y1x2dy1+y2x2dy2++ymx2dymdxn=y1xndy1+y2xndy2++ymxndym

写成矩阵的形式就是:

( d x 1 d x 2 ⋮ d x n ) = [ ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋯ ∂ x 1 ∂ y m ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋯ ∂ x 2 ∂ y m ⋮ ⋮ ⋮ ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋯ ∂ x n ∂ y m ] ( d y 1 d y 2 ⋮ d y m ) \begin{pmatrix} \mathrm{d}x_1\\ \mathrm{d}x_2\\ \vdots\\ \mathrm{d}x_n \end{pmatrix} =\begin{bmatrix} \dfrac{\partial x_1}{\partial y_1} & \dfrac{\partial x_1}{\partial y_2} & \cdots & \dfrac{\partial x_1}{\partial y_m}\\ \dfrac{\partial x_2}{\partial y_1} & \dfrac{\partial x_2}{\partial y_2} & \cdots &\dfrac{\partial x_2}{\partial y_m} \\ \vdots & \vdots & & \vdots\\ \dfrac{\partial x_n}{\partial y_1} & \dfrac{\partial x_n}{\partial y_2} & \cdots &\dfrac{\partial x_n}{\partial y_m} \end{bmatrix}\begin{pmatrix} \mathrm{d}y_1\\ \mathrm{d}y_2\\ \vdots\\ \mathrm{d}y_m \end{pmatrix} dx1dx2dxn = y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn dy1dy2dym

其中的矩阵

∂ ( x 1 , x 2 , ⋯ , x n ) ∂ ( y 1 , y 2 , ⋯ , y m ) = [ ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋯ ∂ x 1 ∂ y m ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋯ ∂ x 2 ∂ y m ⋮ ⋮ ⋮ ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋯ ∂ x n ∂ y m ] \frac{\partial(x_1,x_2,\cdots,x_n)}{\partial(y_1,y_2,\cdots,y_m)}=\begin{bmatrix} \dfrac{\partial x_1}{\partial y_1} & \dfrac{\partial x_1}{\partial y_2} & \cdots & \dfrac{\partial x_1}{\partial y_m}\\ \dfrac{\partial x_2}{\partial y_1} & \dfrac{\partial x_2}{\partial y_2} & \cdots &\dfrac{\partial x_2}{\partial y_m} \\ \vdots & \vdots & & \vdots\\ \dfrac{\partial x_n}{\partial y_1} & \dfrac{\partial x_n}{\partial y_2} & \cdots &\dfrac{\partial x_n}{\partial y_m} \end{bmatrix} (y1,y2,,ym)(x1,x2,,xn)= y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn

就是雅克比矩阵。我们称从坐标 y \mathbf{y} y(分母)到 x \mathbf{x} x(分子)的雅克比矩阵。

3. 极坐标到直角坐标的雅克比矩阵

这个比较简单,利用关系 x = ρ cos ⁡ φ , y = ρ sin ⁡ φ x=\rho\cos\varphi,y=\rho\sin\varphi x=ρcosφ,y=ρsinφ

∂ x ∂ ρ = cos ⁡ φ , ∂ x ∂ φ = − ρ sin ⁡ φ ∂ y ∂ ρ = sin ⁡ φ , ∂ y ∂ φ = ρ cos ⁡ φ \begin{aligned} \dfrac{\partial x}{\partial \rho}=\cos\varphi, & \dfrac{\partial x}{\partial \varphi}=-\rho\sin\varphi\\ \dfrac{\partial y}{\partial \rho}=\sin\varphi, &\dfrac{\partial y}{\partial \varphi}=\rho\cos\varphi \end{aligned} ρx=cosφ,ρy=sinφ,φx=ρsinφφy=ρcosφ

我们可以写出雅克比矩阵
∂ ( x , y ) ∂ ( ρ , φ ) = [ ∂ x ∂ ρ ∂ x ∂ φ ∂ y ∂ ρ ∂ y ∂ φ ] = [ cos ⁡ φ − ρ sin ⁡ φ sin ⁡ φ ρ cos ⁡ φ ] \dfrac{\partial(x,y)}{\partial(\rho,\varphi)}=\begin{bmatrix} \dfrac{\partial x}{\partial \rho} & \dfrac{\partial x}{\partial \varphi}\\ \dfrac{\partial y}{\partial \rho} &\dfrac{\partial y}{\partial \varphi} \end{bmatrix}=\begin{bmatrix} \cos\varphi &-\rho\sin\varphi\\ \sin\varphi &\rho\cos\varphi \end{bmatrix} (ρ,φ)(x,y)= ρxρyφxφy =[cosφsinφρsinφρcosφ]

4. 直角坐标到极坐标的雅克比矩阵

这里有两种方法。

4.1 直接求解

利用关系 ρ 2 = x 2 + y 2 , φ = arctan ⁡ y x \rho^2=x^2+y^2,\quad \varphi=\arctan\frac{y}{x} ρ2=x2+y2,φ=arctanxy,我们可以对上式直接应用求导

对于第一个式子: ρ = x 2 + y 2 \rho=\sqrt{x^2+y^2} ρ=x2+y2

直接求导有:

∂ ρ ∂ x = 2 x 2 x 2 + y 2 = x ρ = cos ⁡ φ ∂ ρ ∂ y = 2 y 2 x 2 + y 2 = y ρ = sin ⁡ φ \frac{\partial\rho}{\partial x}=\frac{2x}{2\sqrt{x^2+y^2}}=\frac{x}{\rho}=\cos\varphi\\ \frac{\partial\rho}{\partial y}=\frac{2y}{2\sqrt{x^2+y^2}}=\frac{y}{\rho}=\sin\varphi xρ=2x2+y2 2x=ρx=cosφyρ=2x2+y2 2y=ρy=sinφ

对于第二个式子直接求导有:

∂ φ ∂ x = − y x 2 1 + y 2 x 2 = − y x 2 + y 2 = − y ρ 2 = − sin ⁡ φ ρ ∂ φ ∂ y = 1 x 1 + y 2 x 2 = x x 2 + y 2 = x ρ 2 = cos ⁡ φ ρ \frac{\partial \varphi}{\partial x}=\frac{-\dfrac{y}{x^{2}}}{1+\dfrac{y^{2}}{x^{2}}}=\frac{-y}{x^{2}+y^{2}}=\frac{-y}{\rho^2}=\frac{-\sin\varphi}{\rho}\\ \frac{\partial \varphi}{\partial y}=\frac{\dfrac{1}{x}}{1+\dfrac{y^{2}}{x^{2}}}=\frac{x}{x^{2}+y^{2}}=\frac{x}{\rho^2}=\frac{\cos\varphi}{\rho} xφ=1+x2y2x2y=x2+y2y=ρ2y=ρsinφyφ=1+x2y2x1=x2+y2x=ρ2x=ρcosφ

当然也可以用全微分的方法来求解,我们对第一个式子全微分:

2 ρ d ρ = 2 x d x + 2 y d y 2\rho\mathrm{d}\rho=2x\mathrm{d}x+2y\mathrm{d}y 2ρdρ=2xdx+2ydy

于是得到

d ρ = x ρ d x + y ρ d y \mathrm{d}\rho=\frac{x}{\rho}\mathrm{d}x+\frac{y}{\rho}\mathrm{d}y dρ=ρxdx+ρydy

于是有:
∂ ρ ∂ x = x ρ = cos ⁡ φ , ∂ y ∂ ρ = y ρ = sin ⁡ φ \dfrac{\partial \rho}{\partial x}=\frac{x}{\rho}=\cos\varphi, \dfrac{\partial y}{\partial \rho}=\frac{y}{\rho}=\sin\varphi xρ=ρx=cosφ,ρy=ρy=sinφ

对第二个式子变换一下:

tan ⁡ φ = y x \tan\varphi=\frac{y}{x} tanφ=xy

然后我们再求全微分:

1 cos ⁡ 2 φ d φ = − y x 2 d x + 1 x d y \frac{1}{\cos^2\varphi}\mathrm{d}\varphi=-\frac{y}{x^2}\mathrm{d}x+\frac{1}{x}\mathrm{d}y cos2φ1dφ=x2ydx+x1dy

于是得到

d φ = − y cos ⁡ 2 φ x 2 d x + cos ⁡ 2 φ x d y = − y ρ 2 d x + x ρ 2 d y = − sin ⁡ φ ρ d x + cos ⁡ φ ρ d y \mathrm{d}\varphi=-\frac{y\cos^2\varphi}{x^2}\mathrm{d}x+\frac{\cos^2\varphi}{x}\mathrm{d}y=-\frac{y}{\rho^2}\mathrm{d}x+\frac{x}{\rho^2}\mathrm{d}y=-\frac{\sin\varphi}{\rho}\mathrm{d}x+\frac{\cos\varphi}{\rho}\mathrm{d}y dφ=x2ycos2φdx+xcos2φdy=ρ2ydx+ρ2xdy=ρsinφdx+ρcosφdy

于是有:
∂ φ ∂ x = − sin ⁡ φ ρ , ∂ φ ∂ y = cos ⁡ φ ρ \frac{\partial \varphi}{\partial x}=\frac{-\sin\varphi}{\rho}, \frac{\partial \varphi}{\partial y}=\frac{\cos\varphi}{\rho} xφ=ρsinφ,yφ=ρcosφ

∂ ( ρ , φ ) ∂ ( x , y ) = [ ∂ ρ ∂ x ∂ ρ ∂ y ∂ φ ∂ x ∂ φ ∂ y ] = [ cos ⁡ φ sin ⁡ φ − sin ⁡ φ ρ cos ⁡ φ ρ ] \dfrac{\partial(\rho,\varphi)}{\partial(x,y)}=\begin{bmatrix} \dfrac{\partial \rho}{\partial x} & \dfrac{\partial \rho}{\partial y}\\ \dfrac{\partial \varphi}{\partial x}&\dfrac{\partial \varphi}{\partial y} \end{bmatrix}=\begin{bmatrix} \cos\varphi &\sin\varphi\\ \dfrac{-\sin\varphi}{\rho}&\dfrac{\cos\varphi}{\rho} \end{bmatrix} (x,y)(ρ,φ)= xρxφyρyφ = cosφρsinφsinφρcosφ

4.2 求逆

这里刚好是一个二阶方阵,所以可以直接对3中的雅克比矩阵求逆:

∂ ( ρ , φ ) ∂ ( x , y ) = ( ∂ ( x , y ) ∂ ( ρ , φ ) ) − 1 = [ cos ⁡ φ − ρ sin ⁡ φ sin ⁡ φ ρ cos ⁡ φ ] − 1 = [ cos ⁡ φ sin ⁡ φ − sin ⁡ φ ρ cos ⁡ φ ρ ] \dfrac{\partial(\rho,\varphi)}{\partial(x,y)}=\left(\dfrac{\partial(x,y)}{\partial(\rho,\varphi)}\right)^{-1}=\begin{bmatrix} \cos\varphi &-\rho\sin\varphi\\ \sin\varphi &\rho\cos\varphi \end{bmatrix}^{-1}{}=\begin{bmatrix} \cos\varphi &\sin\varphi\\ \dfrac{-\sin\varphi}{\rho}&\dfrac{\cos\varphi}{\rho} \end{bmatrix} (x,y)(ρ,φ)=((ρ,φ)(x,y))1=[cosφsinφρsinφρcosφ]1= cosφρsinφsinφρcosφ

相关文章:

极坐标和直角坐标的雅克比矩阵推导

我们经常需要在一些问题中研究坐标系的关系,这里讲讲最常见的极坐标和直角坐标的雅克比矩阵的推导。以二维坐标为例,三维坐标也是同理。 1. 直角坐标和极坐标 直角坐标表示为 ( x , y ) (x,y) (x,y),极坐标表示为 ( ρ , φ ) (\rho,\varph…...

经管博士科研基础【25】概率论中的相关基础概念

1. Support 在概率论中,"support"(支撑集)是指随机变量可能取值的集合。对于离散型随机变量,支撑集包含了所有可能的取值;而对于连续型随机变量,支撑集是指其密度函数或概率质量函数非零的区域。…...

计算机网络的相关知识点总结(一)

1.谈一谈对OSI七层模型和TCP/IP四层模型的理解? 不管是OSI七层模型亦或是TCP/IP四层模型,它们的提出都有一个共同的目的:通过分层来将复杂问题细化,通过各个层级之间的相互配合来更好的解决计算机中出现的问题。 说到分层&#xf…...

下载github.com上的依赖资源

下载github.com上的依赖资源(需要反复试才能成功,所以单独安装) export GIT_TRACE1 export GIT_CURL_VERBOSE1 pip install githttps://github.com/PanQiWei/AutoGPTQ.git -i https://pypi.mirrors.ustc.edu.cn/simple --trusted-hostpypi.mi…...

编写 GPT 提示词的公式 + 资源分享

GPT 能够给我们带来很大的帮助,因此我们要好好利用它。我们希望 GPT 输出令我们满意的内容,影响 GPT 输出内容的因素有模型和输入(Prompt,提示词)。 模型:我们可以选择不同的 GPT 产品,它们的模…...

用HTML、CSS和JavaScript制作的通用进制转换器

随着编程和计算机科学越来越受欢迎,我们经常需要进行进制转换。本文将介绍一个简洁、美观、适用于移动设备的进制转换工具,并详细讨论其实现。 目录 🌍 用HTML、CSS和JavaScript制作的通用进制转换器 1.项目图片展示 2. 技术栈 3. 主要功…...

ArcGIS 10.3软件安装包下载及安装教程!

【软件名称】:ArcGIS 10.3 【安装环境】:Windows 【下载链接 】: 链接:https://pan.baidu.com/s/1K5ab7IHMYa23HpmuPkFa1A 提取码:oxbb 复制这段内容后打开百度网盘手机App,操作更方便哦 软件解压码点击原文…...

【数据增强】

【数据增强】 1 数据增强的情形2 数据增强的方法 1 数据增强的情形 当数据比较小,难以获取新的训练数据时,可以考虑数据增强,如随机裁剪部分,随机左右上下翻转、随机旋转一个角度、随机亮度变化等微小变化,数据的多样…...

Ae 效果:CC Force Motion Blur

时间/CC Force Motion Blur Time/CC Force Motion Blur CC Force Motion Blur (CC 强制运动模糊)主要用于为动态图像添加强制的运动模糊效果,增加动态画面的流畅感和真实感。 相对于时间轴面板上的“运动模糊”开关,CC Force Moti…...

2023华为杯研究生数学建模竞赛CDEF题思路+模型代码

全程更新华为杯研赛CDEF题思路模型及代码,大家查看文末名片获取 华为杯C题思路分析 问题一 在每个评审阶段,作品通常都是随机分发的,每份作品需要多位评委独立评审。为了增加不同评审专家所给成绩之间的可比性,不同专家评审的作…...

FP独立站之黑科技:AB站收款、斗篷CLOAK

最近一段时间经常有不少小伙伴来咨询我独立站的相关的业务,因为很多独立站卖家觉得独立站不好做,再加上跨境平台禁止特货类产品的销售(如FP产品、成人用品、电子烟、灰黑类产品等等),但这类产品市场需求大,…...

【Linux网络编程】gdb调试技巧

这篇博客主要要记录一下自己在Linux操作系统Ubuntu下使用gbd调试程序的一些指令,以及使用过程中的一些心得。 使用方法 可以使用如下代码 gcc -g test.c -o test 或者 gcc test.c -o test ​ -g的选项最好添加,如果不添加,l指令无法被识别 …...

ElementUI之登录与注册

目录 一.前言 二.ElementUI的简介 三.登录注册前端界面的开发 三.vue axios前后端交互--- Get请求 四.vue axios前后端交互--- Post请求 五.跨域问题 一.前言 这一篇的知识点在前面两篇的博客中就已经详细详解啦,包括如何环境搭建和如何建一个spa项目等等知识…...

报错处理:Error: Redis server is running but Redis CLI cannot connect

嗨,读者朋友们!今天我来跟大家分享一个我在运维过程中遇到的一个关于Linux上运行Redis服务时的报错及解决方法。 报错信息如下: Error: Redis server is running but Redis CLI cannot connect 这个报错信息表明Redis服务器已经运行&#xff…...

RocketMQ 源码分析——Producer

文章目录 消息发送代码实现消息发送者启动流程检查配置获得MQ客户端实例启动实例定时任务 Producer 消息发送流程选择队列默认选择队列策略故障延迟机制策略*两种策略的选择 技术亮点:ThreadLocal 消息发送代码实现 下面是一个生产者发送消息的demo(同步发送&#…...

ISTQB术语表

此术语表为国际软件测试认证委员会(ISTQB)发布的标准术语表。此表历经数次修改、完善,集纳了计算机行业界、商业界及政府相关机构的见解及意见,在国际化的层面上达到了罕有的统一性及一致性。参与编制此表的国际团体包括澳大利亚、…...

小米笔试题——01背包问题变种

这段代码的主要思路是使用动态规划来构建一个二维数组 dp,其中 dp[i][j] 表示前 i 个产品是否可以组合出金额 j。通过遍历产品列表和可能的目标金额,不断更新 dp 数组中的值,最终返回 dp[N][M] 来判断是否可以组合出目标金额 M。如果 dp[N][M…...

SkyWalking内置MQE语法

此文档出自SkyWalking官方git https://github.com/apache/skywalking docs/en/api/metrics-query-expression.md Metrics Query Expression(MQE) Syntax MQE is a string that consists of one or more expressions. Each expression could be a combination of one or more …...

Springboot2 Pandas Pyecharts 量子科技专利课程设计大作业

数据集介绍 1.背景 根据《中国科学:信息科学》期刊上的一篇文章,量子通信包括多种协议与应用类型: 基于量子隐形传态与量子存储中继等技术,可实现量子态信息传输,进而构建量子信息网络,已成为当前科研热点&…...

RabbitMQ里的几个重要概念

RabbitMQ中的一些角色: publisher:生产者consumer:消费者exchange个:交换机,负责消息路由,接受生产者发送的消息,把消息发送到一个或多个队列里queue:队列,存储消息virt…...

23. 图论 - 图的由来和构成

文章目录 图的由来图的构成Hi, 你好。我是茶桁。 从第一节课上到现在,我基本上把和人工智能相关的一些数学知识都教给大家了,终于来到我们人工智能数学的最后一个部分了,让我们从今天开始进入「图论」。 图论其实是一个比较有趣的领域,因为微积分其实更多的是对应连续型的…...

拼多多API接口解析,实现根据ID取商品详情

拼多多是一个流行的电商平台,它提供了API接口供开发者使用。要根据ID获取商品详情,您需要使用拼多多API接口并进行相应的请求。 以下是使用拼多多API接口根据ID获取商品详情的示例代码(使用Python编写): import requ…...

【JavaScript】解构

解构(Destructuring)是 JavaScript 中一种强大的语法特性,它允许你从数组或对象中提取值并赋值给变量,使代码更加简洁和易读。JavaScript 中有两种主要的解构语法:数组解构和对象解构。 数组解构 数组解构用于从数组…...

现代卷积网络实战系列2:训练函数、PyTorch构建LeNet网络

4、训练函数 4.1 调用训练函数 train(epochs, net, train_loader, device, optimizer, test_loader, true_value)因为每一个epoch训练结束后,我们需要测试一下这个网络的性能,所有会在训练函数中频繁调用测试函数,所有测试函数中所有需要的…...

rust特性

特性,也叫特质,英文是trait。 trait是一种特殊的类型,用于抽象某些方法。trait类似于其他编程语言中的接口,但又有所不同。 trait定义了一组方法,其他类型可以各自实现这个trait的方法,从而形成多态。 一、…...

TouchGFX之画布控件

TouchGFX的画布控件,在使用相对较小的存储空间的同时保持高性能,可提供平滑、抗锯齿效果良好的几何图形绘制。 TouchGFX 设计器中可用的画布控件: LineCircleShapeLine Progress圆形进度条 存储空间分配和使用​ 为了生成反锯齿效果良好的…...

STM32F103RCT6学习笔记2:串口通信

今日开始快速掌握这款STM32F103RCT6芯片的环境与编程开发,有关基础知识的部分不会多唠,直接实践与运用!文章贴出代码测试工程与测试效果图: 目录 串口通信实验计划: 串口通信配置代码: 测试效果图&#…...

Opencv-图像噪声(均值滤波、高斯滤波、中值滤波)

图像的噪声 图像的平滑 均值滤波 均值滤波代码实现 import cv2 as cv import numpy as np import matplotlib.pyplot as plt from pylab import mplmpl.rcParams[font.sans-serif] [SimHei]img cv.imread("dog.png")#均值滤波cv.blur(img, (5, 5))将对图像img进行…...

MasterAlign相机参数设置-增益调节

相机参数设置-曝光时间调节操作说明 相机参数的设置对于获取清晰、准确的图像至关重要。曝光时间是其中一个关键参数,它直接影响图像的亮度和清晰度。以下是关于曝光时间调节的详细操作步骤,以帮助您轻松进行设置。 步骤一:登录系统 首先&…...

9月22日,每日信息差

今天是2023年09月22日,以下是为您准备的14条信息差 第一、亚马逊将于2024年初在Prime Video中加入广告。Prime Video内容中的广告将于2024年初在美国、英国、德国和加拿大推出,随后晚些时候在法国、意大利、西班牙、墨西哥和澳大利亚推出 第二、中国移…...

wordpress 被镜像/汕头seo排名公司

1. 学好学通c语言的许多种理由单片机需要C语言Java及C#和C语言很像Python是C语言的封装嵌入式Linux编程和开发需要C语言Javascript语言和C语言很像C和C语言很像C语言比汇编容易学……C语言可以引导人们开启编程的大门,教给人们计算机编程的套路,更加彻底…...

网站如何做团购/数据分析

layout拼图安卓版是一款典型的拼图应用,可以让我们把各种照片随心所欲地拼起来,也是轻量级应用的模式打造,整个应用程序非常的轻便,虽然在开发商算不上独一无二的,但绝对是实用标准的拼图应用。功能介绍Instagram 全新…...

做民宿怎么登录网站/深圳英文站seo

dubbo深入浅出—923人已学习 课程介绍 Dubbo是阿里巴巴SOA服务化治理方案的核心框架,每天为2,000个服务提供3,000,000,000次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点。课程收益学会dubbo的使用和理解dubbo的代码实现和底层原理讲师介绍熊文…...

资海集团网站建设/网站怎么做外链

Mybatis通用Mapper极其方便的使用Mybatis单表的增删改查 2.2.0 新增SqlMapper,可以使用MyBatis直接执行sql,详细文档2.2.0版本之后,通过SqlMapper可以支持多表的操作,但是需要在代码中直接写SQL。 即使不使用通用mapper&#xff0…...

网站建设毕业答辩ppt/如何创建网站平台

背景 项目中使用到List求交集,很容易想到collecion.retainAll()方法,但是在数据量比较大时,这个方法效率并不高。本文研究了几种常用的方法,以供大家参考。 方法 【首先】 梳理下思路,List去重一般有几种方法。 『…...

网站建设 力洋网络/广州百度关键词推广

场景 使用docker进行前端项目构建时报错,但是本地构建正常。 完整报错信息The build failed because the process exited too early. This probably means the system ran out of memory or someone called kill -9 on the process. 参考过程 从 create-react-ap…...