多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出
多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出
目录
- 多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出
- 预测效果
- 基本介绍
- 程序设计
- 往期精彩
- 参考资料
预测效果





基本介绍
Matlab实现PSO-BP粒子群优化BP神经网络多输入多输出预测
1.data为数据集,10个输入特征,3个输出变量。
2.main.m为主程序文件。
3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。
程序设计
- 完整程序和数据下载方式:私信博主回复MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 节点个数
inputnum = size(p_train, 1); % 输入层节点数
hiddennum = 5; % 隐藏层节点数
outputnum = size(t_train,1); % 输出层节点数
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 建立网络
net = newff(p_train, t_train, hiddennum);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 设置训练参数
net.trainParam.epochs = 1000; % 训练次数
net.trainParam.goal = 1e-6; % 目标误差
net.trainParam.lr = 0.01; % 学习率
net.trainParam.showWindow = 0; % 关闭窗口
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 参数初始化
c1 = 4.494; % 学习因子
c2 = 4.494; % 学习因子
maxgen = 50; % 种群更新次数
sizepop = 5; % 种群规模
Vmax = 1.0; % 最大速度
Vmin = -1.0; % 最小速度
popmax = 1.0; % 最大边界
popmin = -1.0; % 最小边界
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;for i = 1 : sizepoppop(i, :) = rands(1, numsum); % 初始化种群V(i, :) = rands(1, numsum); % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);endendBestFit = [BestFit, fitnesszbest];
end%% 提取最优初始权值和阈值
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...+ hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);
往期精彩
MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261
相关文章:
多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出
多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出 目录 多输入多输出 | MATLAB实现PSO-BP粒子群优化BP神经网络多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 Matlab实现PSO-BP粒子群优化BP神经网络多输入多输出预测 1.data为数据…...
操作系统:系统引导以及虚拟机
1.操作系统引导的过程 ①CPU从一个特定主存地址开始取指令,执行ROM中的引导程序(先进行硬件自检,再开机)②将磁盘的第一块:主引导记录读入内存,执行磁盘引导程序,扫描分区表③从活动分区(又称主…...
AIGC绘本——海马搬家来喽
随着ChatGPT的快速发展,人工智能领域也发生了翻天覆地的变化。今天,我们迎合科技潮流,利用AIGC的强大能力,可以创作很多精彩的作品,比如这样一本名为《海马搬家》的绘本(注:此绘本根据同名儿童故…...
strtok()函数的使用方法
strtok() 函数用于将字符串分割成子字符串(标记)。它在 C 语言中非常常用,可以通过指定分隔符来拆分原始字符串,并依次返回每个子字符串。 以下是 strtok() 函数的使用方法: #include <stdio.h> #include <…...
Matlab中的handle 类
目录 说明 类属性 方法 公共方法 事件 示例 从 handle 派生类 说明 handle 类是遵守句柄语义的所有类的超类。句柄是引用 handle 类的对象的变量。多个变量可以引用同一个对象。 handle 类是抽象类,这样无法直接创建该类的实例。使用 handle 类派…...
C#,数值计算——Multinormaldev的计算方法与源程序
1 文本格式 using System; namespace Legalsoft.Truffer { public class Multinormaldev : Ran { public Cholesky chol { get; set; } null; private int mm { get; set; } private double[] mean { get; set; } private double[,] xvar {…...
软件项目测试用例评审
软件项目测试用例评审是确保测试计划的一部分(即测试用例)满足项目质量和要求的关键步骤之一。以下是一个通用的软件项目测试用例评审流程,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎…...
图像处理与计算机视觉--第二章-成像与图像表示-8问
图像处理与计算机视觉--第二章-成像与图像表示-8问 1.光谱波长分布及其成像特点各是什么? 光谱波长分布:是指在不同波长范围内的光的强度或能量分布。它通常可以用光谱图来表示,其中横轴是波长,纵轴是光的强度或能量。 成像特点…...
python中使用多线程批量导入包
问题放到前面,目前发现一个问题,importlib对于c/c编译过来的包,只支持导入最顶层的包,不过也够了。 因为有些项目的依赖太多,所以导致每个文件头部都包含大量import语句,用来导入必要的包,如果量…...
齿轮减速机设备类网站pbootcms模板(PC端+手机端自适应)
齿轮减速机设备类网站pbootcms模板-手机端自适应,优化SEO效果 模板介绍: 这是一款基于PbootCMS内核开发的模板,专为机械设备和加工机械类企业设计。该模板具有简洁简单的页面设计,易于管理,同时还附带测试数据。通过使…...
MySQL报错:this is incompatible with sql_mode=only_full_group_by 解决方法
文章目录 项目场景:原因分析及解决方案:总结: 项目场景: 提示:这里简述项目相关背景: which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_modeonly_f…...
impala常用时间函数,date->string->timestamp互转
impala 和hive不一样,hive是弱类型,比如int和string在大部分条件下可以比较 比如hive select 11 --结果true或false 但是impala select 11 报错 operands of type TINYINT and STRING are not comparable: 1 1 这样带来的好处是 类型一致结果更…...
无源供电无线测温系统的应用意义
电力系统设备在长期的运行中,往往会产生老化或过热现象,如果没有及时发现和解决,可能会造成严重的火灾事故。由于变电站设备地理位置偏远,对于其维护和监控,管理人员不能做到面面俱到,巡检和维护的难度较大…...
使用 PyTorch 的计算机视觉简介 (1/6)
一、说明 Computer Vision(CV)是一个研究计算机如何从数字图像和/或视频中获得一定程度的理解的领域。理解这个定义具有相当广泛的含义 - 它可以从能够区分图片上的猫和狗,到更复杂的任务,例如用自然语言描述图像。 二、CV常见的问…...
用PHP实现极验验证功能
极验验证是一种防机器人的验证机制,可以通过图像识别等方式来判断用户是否为真实用户。在实现极验验证功能时,您需要进行以下步骤: 1 注册极验账号: 首先,您需要在极验官网注册账号并创建一个应用,获取相应…...
【数据结构初阶】三、 线性表里的链表(无头+单向+非循环链表)
相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【数据结构初阶】二、 线性表里的顺序表_高高的胖子的博客-CSDN博客 引言 通过上期对顺序表的介绍和使用 我们可以知道顺序表有以下优点和缺点: 顺序表优点 尾插 和 尾…...
Mybatis 映射器与XML配置职责分离
之前我们介绍了使用XML配置方式完成对数据的增删改查操作,使用此方式在实际调用时需要使用【命名空间.标签编号】的方式执行,此方式在编写SQL语句时很方便,而在执行SQL语句环节就显得不太优雅;另外我们也介绍了使用映射器完成对数…...
微服务引擎
微服务引擎,MSE_微服务引擎 MSE-阿里云帮助中心 一、什么是微服务引擎MSE 微服务引擎MSE(Microservices Engine)是一个面向业界主流开源微服务生态的一站式微服务平台,提供注册配置中心(原生支持Nacos/ZooKeeper/Eur…...
前端JavaScript入门到精通,javascript核心进阶ES6语法、API、js高级等基础知识和实战 —— JS基础(三)
允许一切发生,生活不过是见招拆招。 思维导图 一、循环-for 1.1 for 循环-基本使用 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEe…...
搭建部署属于自己的基于gpt3.5的大语言模型(基于flask+html+css+js+mysql实现)
一、简介 本项目是一个基于GPT-3.5模型的聊天机器人网站,旨在为用户提供一个简便、直接的方式来体验和利用GPT-3.5模型的强大功能。项目以Flask为基础,构建了一个完整的Web应用程序,其中包含了多个前端页面和后端API接口,能够处理…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
