当前位置: 首页 > news >正文

[数据结构]时间复杂度与空间复杂度

[数据结构]时间复杂度与空间复杂度

如何衡量一个算法的好坏

long long Fib(int N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}  

这是一个求斐波那契数列的函数,使用递归的方法求得,虽然代码看起来很简洁,但是简洁真的就好吗?

这就是我们本节要学的时间复杂度和空间复杂度要去讨论的话题,等理解了之后再回头来看这道题。

算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此**衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。**
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

时间复杂度的概念

时间复杂度的定义在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

一个算法执行所耗费的时间,理论上是不能算出来的,只有你把程序在计算机上跑一遍之后才能知道,但是每一个算法我们都要上机测试的话很麻烦,所以才有了时间复杂度这个概念。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。也就是说:

找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

来看一个计算例子:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count; }printf("%d ",count); 

问这个算法时间复杂度是多少?

如果从第一行来算的话,我们一共有10行代码,也就是有限次,并且由于中间有循环,所以有代码是被执行了多次,所以时间复杂度结果是:
F(N)=N2+2N+10F(N)=N^2+2N+10 F(N)=N2+2N+10
这时候我们就要考虑一下了,既然时间复杂度是一个函数,这里的算法还算简单,如果是一些复杂的算法时间复杂度岂不是很复杂,所以我们有了大O的渐进表示法,N取不同值F(N)当然也是不同的,当N趋向于无穷大时,其实后面2N+10当然是可以忽略的,所以我们只保留函数的最高的那个量级即可。

大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

大O阶方法表示:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

例如上面O(N2),如果N2前面有系数的话也是可以去掉的。

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

image-20230222201933879

当考虑一个算法时:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

当分情况考虑时,我们还有最好情况,平均情况,和最坏情况之分,我们计算**时间复杂度通常来讲我们是考虑最坏情况的**。

小试牛刀

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;	}printf("%d\n", count);
}  

答案:O(N)

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}  

答案:O(M+N)

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}  

答案:O(1)

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

答案:O(strlen(str))

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

答案:O(N^2)

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

答案:O(logN),logN是log以2为底N的对数。提示:要分析程序的语义,不要只数循环

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

答案:O(N),通常递归的时间复杂度通常是递归的深度

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

答案:O(2^N)

只有这个比较有难度,这个递归实际上是一个二叉树的结构

image-20230223132921975

每一层的次数都是一个等比数列,求和即可得到结果。

空间复杂度

空间复杂度概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用

大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外

空间来确定。

小试牛刀

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

答案:O(1)

因为其中只创建了3个变量,也就是常数个。

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

答案:O(N)

在栈上开辟了N块空间,空间复杂度是O(N)

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

答案:O(N)

这个是有难度的,要对函数栈帧理解的比较深刻,并且知道这个递归是怎么进行的,

二叉树结构的递归调用实际上是深度优先:

image-20230223141534813

只有当最左边的调用一直到底时返回才会调用右边,当函数返回时,函数的栈帧就已经销毁了,所以再次回来时,还是同一块空间,并没有额外的空间开销,

所以最终空间复杂度为O(N)

相关文章:

[数据结构]时间复杂度与空间复杂度

[数据结构]时间复杂度与空间复杂度 如何衡量一个算法的好坏 long long Fib(int N) {if(N < 3)return 1;return Fib(N-1) Fib(N-2); } 这是一个求斐波那契数列的函数&#xff0c;使用递归的方法求得&#xff0c;虽然代码看起来很简洁&#xff0c;但是简洁真的就好吗&#…...

Codeforces Round #848 (Div. 2)(A~D)

A. Flip Flop Sum给出一个只有1和-1的数组&#xff0c;修改一对相邻的数&#xff0c;将它们变为对应的相反数&#xff0c;修改完后数组的和最大是多少。思路&#xff1a;最优的情况是修改一对-1&#xff0c;其次是一个1一个-1&#xff0c;否则修改两个1。AC Code&#xff1a;#i…...

第十三届蓝桥杯Java B 组国赛 C 题——左移右移(AC)

目录1.左移右移1.题目描述2.输入格式3.输出格式4.样例输入5.样例输出6.数据范围6.原题链接2.解题思路3.Ac_code1.左移右移 1.题目描述 小蓝有一个长度为 NNN 的数组, 初始时从左到右依次是 1,2,3,…N1,2,3, \ldots N1,2,3,…N 。 之后小蓝对这个数组进行了 MMM 次操作, 每次…...

第14篇:系列二—Java抽象类/接口/枚举

目录 1、继承的定义(Inheritance) 2、继承的优点 2.1 易维护性 2.2 复用性 2.3 条理性...

深入浅出C++ ——哈希

文章目录前言一、unordered系列关联式容器1. unordered_map2. unordered_set二、哈希1. 哈希概念2. 哈希冲突3. 哈希函数4. 哈希冲突解决方法三、模拟实现unordered系列容器1. 哈希表的改造2. 模拟实现 unordered_set3. 模拟实现 unordered_map前言 在C11中&#xff0c;STL又提…...

Tina_Linux_系统裁剪_开发指南

文章目录Tina_Linux_系统裁剪_开发指南1 概述2 Tina系统裁剪简介2.1 boot0裁剪2.2 uboot裁剪2.3 内核裁剪2.3.1 删除不使用的功能2.3.2 删除不使用的驱动2.3.3 修改内核源代码2.3.3.1 size工具.2.3.3.2 ksize.py脚本2.3.3.3 nm命令2.3.3.4 kernel压缩方式.2.4 文件系统裁剪.2.4…...

算法刷题打卡第99天:至少在两个数组中出现的值

至少在两个数组中出现的值 难度&#xff1a;简单 给你三个整数数组 nums1、nums2 和 nums3 &#xff0c;请你构造并返回一个 元素各不相同的 数组&#xff0c;且由 至少 在 两个 数组中出现的所有值组成。数组中的元素可以按 任意 顺序排列。 示例 1&#xff1a; 输入&…...

线程池面试题

1. 什么是线程池&#xff1f;为什么要使用线程池&#xff1f; 线程池是一种用于管理线程的技术&#xff0c;它可以在应用程序中重复使用一组线程来执行多个任务。线程池的优点包括提高应用程序的性能和可伸缩性、避免线程创建和销毁的开销、避免线程过多导致系统负担过重等。线…...

【学习笔记】NOIP爆零赛5

说实话是不想补题的。因为每一道题都贼难写&#xff0c;题解又通篇写着显然&#xff0c;然后自己天天搞竞赛又把注意力搞差了&#xff0c;调一道题又调半天&#xff0c;考试的题又难的要死 不会正解 &#xff0c;部分分又写挂了 可能心态崩了就是从那场t1t1t1签到题考高精度数位…...

【数据结构】时间复杂度

&#x1f680;write in front&#x1f680; &#x1f4dc;所属专栏&#xff1a;初阶数据结构 &#x1f6f0;️博客主页&#xff1a;睿睿的博客主页 &#x1f6f0;️代码仓库&#xff1a;&#x1f389;VS2022_C语言仓库 &#x1f3a1;您的点赞、关注、收藏、评论&#xff0c;是对…...

vector的基本使用

目录 介绍&#xff1a; vector iterator 的使用 增删查改 增&#xff08;push_back insert&#xff09;&#xff1a; 删(pop_back erase)&#xff1a; swap&#xff1a; vector的容量和扩容&#xff1a; 排序&#xff08;sort&#xff09;&#xff1a; 介绍&#xff…...

剑指 Offer 55 - I. 二叉树的深度

摘要 剑指 Offer 55 - I. 二叉树的深度 一、深度优先搜索 如果我们知道了左子树和右子树的最大深度l和r&#xff0c;那么该二叉树的最大深度即为&#xff1a;max(l,r)1。 而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计…...

Bean的生命周期和作用域

Bean的生命周期Bean的执行流程&#xff1a;Bean 执行流程&#xff1a;启动Spring 容器 -> 实例化 Bean&#xff08;分配内存空间&#xff0c;从无到有&#xff09;-> Bean 注册到 Spring 中&#xff08;存操作&#xff09; -> 将 Bean 装配到需要的类中&#xff08;取…...

TestNG和Junit的区别,测试框架该如何选择?

要想知道两个框架的区别&#xff0c;首先分别介绍一下两个框架。 TestNG是一个java中的开源自动化测试框架&#xff0c;其灵感来自JUnit和NUnit&#xff0c;TestNG还涵盖了JUnit4整个核心的功能&#xff0c;但引入了一些新的功能&#xff0c;使其功能更强大&#xff0c;使用更…...

MySQL安全登录策略

MySQL密码复杂度策略设置 MySQL 系统自带有 validate_password 插件&#xff0c;此插件可以验证密码强度&#xff0c;未达到规定强度的密码则不允许被设置。MySQL 5.7 及 8.0 版本默认情况下貌似都不启用该插件&#xff0c;这也使得我们可以随意设置密码&#xff0c;比如设置为…...

优化模型验证23:带无人机停靠站的卡车无人机协同配送车辆路径问题、模型、gurobipy验证及结果可视化

带中转hub的卡车无人机车辆路径问题 模型来源为:Wang Z , Sheu J B . Vehicle routing problem with drones[J]. Transportation Research Part B: Methodological, 2019, 122(APR.):350-364. 问题描述: 这篇问题研究了一个带停靠站的卡车无人机路径问题,无人机仅能从起点…...

mongoTemplate Aggregation 多表联查 排序失效问题解决

目录说明说明 接着上一个文章的例子来说&#xff1a;mongoTemplate支持多表联查 排序 条件筛选 分页 去重分组 在按照上一个demo的代码执行后&#xff0c;可能会发生排序失效的问题&#xff0c;为什么说可能呢&#xff1f;每个人负责业务不同&#xff0c;不可能是最简单的dem…...

什么是智慧实验室?

智慧实验室是利用现代信息技术和先进设备将实验室实现智能化和智慧化的概念。通过将各种数据、信息和资源整合在一起&#xff0c;实现实验室设备的互联互通&#xff0c;数据的实时采集、传输、处理和分析&#xff0c;从而提高实验室的效率、精度和可靠性。一、智慧实验室包含多…...

Python abs() 函数

Python abs() 函数Python 数字描述abs() 函数返回数字的绝对值。语法以下是 abs() 方法的语法:abs( x )参数x -- 数值表达式。返回值函数返回x&#xff08;数字&#xff09;的绝对值。实例以下展示了使用 abs() 方法的实例&#xff1a;#!/usr/bin/python print "abs(-45) …...

裸辞了,面试了几十家软件测试公司,终于找到想要的工作

上半年裁员&#xff0c;下半年裸辞&#xff0c;有不少人高呼裸辞后躺平真的好快乐&#xff01;但也有很多人&#xff0c;裸辞后的生活五味杂陈。 面试了几十家终于找到心仪工作 因为工作压力大、领导PUA等各种原因&#xff0c;今年2月下旬我从一家互联网小厂裸辞&#xff0c;没…...

ShardingSphere

1.简介 1.开源的分布式数据生态项目 ShardingSphere-JDBC&#xff1a;轻量级Java框架ShardingSphere-Proxy&#xff1a;数据库代理ShardingSphere-Sidecar(规划中)&#xff1a;Kubernetes的云原生数据库代理 2.使用版本&#xff1a;ShardingSphere5.1.1 1.数据库集群架构 1.出现…...

配置Maven

对于刚开始认识的Maven的初学者超级有用的哦&#xff01;项目统一共享使用一套jar包&#xff0c;由maven统一管理。节省了jar空间&#xff0c;统一jar包版本首先将maven安装完毕测试有没有配置完成&#xff0c;在命令框里面打 mvn -version进行测试maven安装完&#xff0c;第一…...

赛宁网安“网络安全卓越中心”:立足科技创新 推动网安产业高质量发展

​​2月22日上午&#xff0c;网络安全卓越中心CPCOE——圆桌论坛活动在南京召开。本次论坛由南京未来科技城主办&#xff0c;南京赛宁信息技术有限公司承办。论坛上&#xff0c;江苏省科协副主席、南京理工大学教授李千目&#xff0c;江苏省互联网协会副理事长兼秘书长刘湘生&a…...

操作系统题目收录(十四)

1、 有些操作系统中将文件描述信息从目录项中分离出来&#xff0c;这样做的好处是&#xff08;&#xff09;。 A&#xff1a;减少读文件时的I/O信息量B&#xff1a;减少写文件时的I/O信息量C&#xff1a;减少查找文件时的I/O信息量D&#xff1a;减少复制文件时的I/O信息量 解…...

Qt 第1课、Qt 的窗口组件和窗口类型

GUI 程序的开发原理&#xff1a; GUI 程序在运行的时候&#xff0c;操作系统会为它创造一个消息队列&#xff0c;消息队列用于存储操作系统发过来的系统消息。 用户使用操作系统的过程中&#xff0c;操作系统内核检测到用户的操作&#xff08;鼠标&#xff0c;键盘&#xff09…...

【Jmeter】ForEach控制器

一、什么是ForEach控制器 ForEach控制器是遍历某个数组读取不同的变量值&#xff0c;来控制其下的采样器或控制器执行一次或多次。而这个数组可以是用户自定义变量&#xff0c;也可以是从前面接口请求中提取到需要的数据&#xff0c;然后进行遍历循环。 二、ForEach控制器相关…...

Julia 数据类型

在编程语言中&#xff0c;都有基本的数学运算和科学计算&#xff0c;它们常用的数据类型为整数和浮点数。 另外还有一个"字面量"的术语&#xff0c;字面量&#xff08;literal&#xff09;用于表达源代码中一个固定值的表示法&#xff08;notation&#xff09;&…...

01-基于SOA架构someip 开发-Linux开发环境搭建

前言&#xff1a;SOME/IP 是一个汽车的中间件解决方案&#xff0c;可用于控制消息。从一开始&#xff0c;它的设计就是为了完美地适应不同尺寸和不同操作系统的设备。这包括小型设备&#xff0c;如相机、AUTOSAR设备&#xff0c;以及头部单元或远程信息处理设备。同时还确保了S…...

历时半年!从外包到现在阿里网易25K,分享一下自己的涨薪经验

前言 首先自我介绍一下&#xff0c;本人普通一本毕业&#xff0c;年初被老东家裁员干掉了&#xff0c;之后一直住在朋友那混吃等死&#xff0c;转折是今年年后&#xff0c;二月初的时候和大佬吃了个饭&#xff0c;觉得自己不能这样下去了&#xff0c;拿着某大佬给我的面试资料…...

支付系统中的设计模式04:改进的策略与外观模式

随着业务越做越大,交易量大了,老板觉得可以用一些变相的方法增加一些收入了,同时也有利于用户,做到双赢。这很好理解,“往地上戳一棍子都能冒出油来”,谁能扛得住这种诱惑呢? 于是,老板就提了这样的需求: 支付系统需要根据不同的结算模式,返利给账户: 1、选择T+1结算…...