当前位置: 首页 > news >正文

浮点数在内存中的存储——“C”

各位CSDN的uu们你们好呀,今天,小雅兰的内容是浮点数在内存中的存储,昨天我们已经写过了整型在内存中的存储,那么,浮点数在内存中是怎样存储的呢?现在,就让我们进入浮点数在内存中的存储的世界吧


常见的浮点数:

3.14159

1E10

浮点数家族包括: float、double、long double 类型。

浮点数表示的范围:float.h中定义

整型家族的类型的取值范围:limit.h


下面,我们来看一小段代码

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);*pFloat = 9.0;printf("num的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);return 0;
}

 

仔细一想:打印出来的结果为什么会是这个样子呢?


浮点数存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

详细解读: 根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

  • (-1)^S * M * 2^E
  • (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
  • M表示有效数字,大于等于1,小于2。
  • 2^E表示指数位。

 

 

十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。  

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。  

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时 候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int),这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间 数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

 举个例子:

#include<stdio.h>
int main()
{float f = 5.5f;//101.1//(-1)^0*1.011*2^2//0 10000001 01100000000000000000000//   2+127//把二进制转化为十六进制//40b00000return 0;
}

可见,事实就是如此!


然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。

比如:0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

1.××× * 2^-127

E全为1  

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)

1.××× * 2^128

好了,关于浮点数的表示规则,就说到这里。


那么,之前的那个我们不理解的打印结果就说得通了

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int main()
{int n = 9;float* pFloat = (float*)&n;printf("n的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);*pFloat = 9.0;printf("num的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);return 0;
}

 int n = 9;

 float* pFloat = (float*)&n;

00000000000000000000000000001001 —— 9的原码

 00000000000000000000000000001001 —— 9的反码

 00000000000000000000000000001001 —— 9的补码

 0 00000000 00000000000000000001001 

 E=1-127=-126

 M=0.00000000000000000001001

 (-1)^0*0.00000000000000000001001*2^-126

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

*pFloat = 9.0;

1001.0

1.001*2^3

(-1)^0*1.001*2^3

S=0

M=1.001

E=3

第一位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130, 即10000010。

0 10000010 00100000000000000000000

    3+127

这个32位的二进制数,还原成十进制,正是 1091567616 。


好啦,小雅兰今天的内容就到这里啦,还要继续加油呀!!!

 

相关文章:

浮点数在内存中的存储——“C”

各位CSDN的uu们你们好呀&#xff0c;今天&#xff0c;小雅兰的内容是浮点数在内存中的存储&#xff0c;昨天我们已经写过了整型在内存中的存储&#xff0c;那么&#xff0c;浮点数在内存中是怎样存储的呢&#xff1f;现在&#xff0c;就让我们进入浮点数在内存中的存储的世界吧…...

华为OD机试 C++ 实现 - 租车骑绿岛

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…...

Spring Cloud Nacos源码讲解(三)- Nacos客户端实例注册源码分析

Nacos客户端实例注册源码分析 实例客户端注册入口 流程图&#xff1a; 实际上我们在真实的生产环境中&#xff0c;我们要让某一个服务注册到Nacos中&#xff0c;我们首先要引入一个依赖&#xff1a; <dependency><groupId>com.alibaba.cloud</groupId><…...

位运算(C/C++)

1. 基础知识 程序中的所有数在计算机内存中都是以二进制的形式储存的。位运算就是直接对整数在内存中的二进制位进行操作。比如&#xff0c;and运算本来是一个逻辑运算符&#xff0c;但整数与整数之间也可以进行and运算。举个例子&#xff0c;6的二进制是110&#xff0c;11的二…...

哈希表题目:设计哈希映射

文章目录题目标题和出处难度题目描述要求示例数据范围前言解法一思路和算法代码复杂度分析解法二思路和算法代码复杂度分析题目 标题和出处 标题&#xff1a;设计哈希映射 出处&#xff1a;706. 设计哈希映射 难度 3 级 题目描述 要求 不使用任何内建的哈希表库设计一个…...

​力扣解法汇总1238. 循环码排列

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a; 力扣 描述&#xff1a; 给你两个整数 n 和 start。你的任务是返回任意 (0,1,2,,...,2^n-1) 的排列 p&…...

[数据结构]时间复杂度与空间复杂度

[数据结构]时间复杂度与空间复杂度 如何衡量一个算法的好坏 long long Fib(int N) {if(N < 3)return 1;return Fib(N-1) Fib(N-2); } 这是一个求斐波那契数列的函数&#xff0c;使用递归的方法求得&#xff0c;虽然代码看起来很简洁&#xff0c;但是简洁真的就好吗&#…...

Codeforces Round #848 (Div. 2)(A~D)

A. Flip Flop Sum给出一个只有1和-1的数组&#xff0c;修改一对相邻的数&#xff0c;将它们变为对应的相反数&#xff0c;修改完后数组的和最大是多少。思路&#xff1a;最优的情况是修改一对-1&#xff0c;其次是一个1一个-1&#xff0c;否则修改两个1。AC Code&#xff1a;#i…...

第十三届蓝桥杯Java B 组国赛 C 题——左移右移(AC)

目录1.左移右移1.题目描述2.输入格式3.输出格式4.样例输入5.样例输出6.数据范围6.原题链接2.解题思路3.Ac_code1.左移右移 1.题目描述 小蓝有一个长度为 NNN 的数组, 初始时从左到右依次是 1,2,3,…N1,2,3, \ldots N1,2,3,…N 。 之后小蓝对这个数组进行了 MMM 次操作, 每次…...

第14篇:系列二—Java抽象类/接口/枚举

目录 1、继承的定义(Inheritance) 2、继承的优点 2.1 易维护性 2.2 复用性 2.3 条理性...

深入浅出C++ ——哈希

文章目录前言一、unordered系列关联式容器1. unordered_map2. unordered_set二、哈希1. 哈希概念2. 哈希冲突3. 哈希函数4. 哈希冲突解决方法三、模拟实现unordered系列容器1. 哈希表的改造2. 模拟实现 unordered_set3. 模拟实现 unordered_map前言 在C11中&#xff0c;STL又提…...

Tina_Linux_系统裁剪_开发指南

文章目录Tina_Linux_系统裁剪_开发指南1 概述2 Tina系统裁剪简介2.1 boot0裁剪2.2 uboot裁剪2.3 内核裁剪2.3.1 删除不使用的功能2.3.2 删除不使用的驱动2.3.3 修改内核源代码2.3.3.1 size工具.2.3.3.2 ksize.py脚本2.3.3.3 nm命令2.3.3.4 kernel压缩方式.2.4 文件系统裁剪.2.4…...

算法刷题打卡第99天:至少在两个数组中出现的值

至少在两个数组中出现的值 难度&#xff1a;简单 给你三个整数数组 nums1、nums2 和 nums3 &#xff0c;请你构造并返回一个 元素各不相同的 数组&#xff0c;且由 至少 在 两个 数组中出现的所有值组成。数组中的元素可以按 任意 顺序排列。 示例 1&#xff1a; 输入&…...

线程池面试题

1. 什么是线程池&#xff1f;为什么要使用线程池&#xff1f; 线程池是一种用于管理线程的技术&#xff0c;它可以在应用程序中重复使用一组线程来执行多个任务。线程池的优点包括提高应用程序的性能和可伸缩性、避免线程创建和销毁的开销、避免线程过多导致系统负担过重等。线…...

【学习笔记】NOIP爆零赛5

说实话是不想补题的。因为每一道题都贼难写&#xff0c;题解又通篇写着显然&#xff0c;然后自己天天搞竞赛又把注意力搞差了&#xff0c;调一道题又调半天&#xff0c;考试的题又难的要死 不会正解 &#xff0c;部分分又写挂了 可能心态崩了就是从那场t1t1t1签到题考高精度数位…...

【数据结构】时间复杂度

&#x1f680;write in front&#x1f680; &#x1f4dc;所属专栏&#xff1a;初阶数据结构 &#x1f6f0;️博客主页&#xff1a;睿睿的博客主页 &#x1f6f0;️代码仓库&#xff1a;&#x1f389;VS2022_C语言仓库 &#x1f3a1;您的点赞、关注、收藏、评论&#xff0c;是对…...

vector的基本使用

目录 介绍&#xff1a; vector iterator 的使用 增删查改 增&#xff08;push_back insert&#xff09;&#xff1a; 删(pop_back erase)&#xff1a; swap&#xff1a; vector的容量和扩容&#xff1a; 排序&#xff08;sort&#xff09;&#xff1a; 介绍&#xff…...

剑指 Offer 55 - I. 二叉树的深度

摘要 剑指 Offer 55 - I. 二叉树的深度 一、深度优先搜索 如果我们知道了左子树和右子树的最大深度l和r&#xff0c;那么该二叉树的最大深度即为&#xff1a;max(l,r)1。 而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计…...

Bean的生命周期和作用域

Bean的生命周期Bean的执行流程&#xff1a;Bean 执行流程&#xff1a;启动Spring 容器 -> 实例化 Bean&#xff08;分配内存空间&#xff0c;从无到有&#xff09;-> Bean 注册到 Spring 中&#xff08;存操作&#xff09; -> 将 Bean 装配到需要的类中&#xff08;取…...

TestNG和Junit的区别,测试框架该如何选择?

要想知道两个框架的区别&#xff0c;首先分别介绍一下两个框架。 TestNG是一个java中的开源自动化测试框架&#xff0c;其灵感来自JUnit和NUnit&#xff0c;TestNG还涵盖了JUnit4整个核心的功能&#xff0c;但引入了一些新的功能&#xff0c;使其功能更强大&#xff0c;使用更…...

MySQL安全登录策略

MySQL密码复杂度策略设置 MySQL 系统自带有 validate_password 插件&#xff0c;此插件可以验证密码强度&#xff0c;未达到规定强度的密码则不允许被设置。MySQL 5.7 及 8.0 版本默认情况下貌似都不启用该插件&#xff0c;这也使得我们可以随意设置密码&#xff0c;比如设置为…...

优化模型验证23:带无人机停靠站的卡车无人机协同配送车辆路径问题、模型、gurobipy验证及结果可视化

带中转hub的卡车无人机车辆路径问题 模型来源为:Wang Z , Sheu J B . Vehicle routing problem with drones[J]. Transportation Research Part B: Methodological, 2019, 122(APR.):350-364. 问题描述: 这篇问题研究了一个带停靠站的卡车无人机路径问题,无人机仅能从起点…...

mongoTemplate Aggregation 多表联查 排序失效问题解决

目录说明说明 接着上一个文章的例子来说&#xff1a;mongoTemplate支持多表联查 排序 条件筛选 分页 去重分组 在按照上一个demo的代码执行后&#xff0c;可能会发生排序失效的问题&#xff0c;为什么说可能呢&#xff1f;每个人负责业务不同&#xff0c;不可能是最简单的dem…...

什么是智慧实验室?

智慧实验室是利用现代信息技术和先进设备将实验室实现智能化和智慧化的概念。通过将各种数据、信息和资源整合在一起&#xff0c;实现实验室设备的互联互通&#xff0c;数据的实时采集、传输、处理和分析&#xff0c;从而提高实验室的效率、精度和可靠性。一、智慧实验室包含多…...

Python abs() 函数

Python abs() 函数Python 数字描述abs() 函数返回数字的绝对值。语法以下是 abs() 方法的语法:abs( x )参数x -- 数值表达式。返回值函数返回x&#xff08;数字&#xff09;的绝对值。实例以下展示了使用 abs() 方法的实例&#xff1a;#!/usr/bin/python print "abs(-45) …...

裸辞了,面试了几十家软件测试公司,终于找到想要的工作

上半年裁员&#xff0c;下半年裸辞&#xff0c;有不少人高呼裸辞后躺平真的好快乐&#xff01;但也有很多人&#xff0c;裸辞后的生活五味杂陈。 面试了几十家终于找到心仪工作 因为工作压力大、领导PUA等各种原因&#xff0c;今年2月下旬我从一家互联网小厂裸辞&#xff0c;没…...

ShardingSphere

1.简介 1.开源的分布式数据生态项目 ShardingSphere-JDBC&#xff1a;轻量级Java框架ShardingSphere-Proxy&#xff1a;数据库代理ShardingSphere-Sidecar(规划中)&#xff1a;Kubernetes的云原生数据库代理 2.使用版本&#xff1a;ShardingSphere5.1.1 1.数据库集群架构 1.出现…...

配置Maven

对于刚开始认识的Maven的初学者超级有用的哦&#xff01;项目统一共享使用一套jar包&#xff0c;由maven统一管理。节省了jar空间&#xff0c;统一jar包版本首先将maven安装完毕测试有没有配置完成&#xff0c;在命令框里面打 mvn -version进行测试maven安装完&#xff0c;第一…...

赛宁网安“网络安全卓越中心”:立足科技创新 推动网安产业高质量发展

​​2月22日上午&#xff0c;网络安全卓越中心CPCOE——圆桌论坛活动在南京召开。本次论坛由南京未来科技城主办&#xff0c;南京赛宁信息技术有限公司承办。论坛上&#xff0c;江苏省科协副主席、南京理工大学教授李千目&#xff0c;江苏省互联网协会副理事长兼秘书长刘湘生&a…...

操作系统题目收录(十四)

1、 有些操作系统中将文件描述信息从目录项中分离出来&#xff0c;这样做的好处是&#xff08;&#xff09;。 A&#xff1a;减少读文件时的I/O信息量B&#xff1a;减少写文件时的I/O信息量C&#xff1a;减少查找文件时的I/O信息量D&#xff1a;减少复制文件时的I/O信息量 解…...