【云原生】kubernetes中pod(进阶)
目录
一、资源限制 业务cpu 内存
1.1CPU 资源单位
1.2 内存 资源单位
示例1
示例2:
二、健康检查:又称为探针(Probe)
2.1探针的三种规则
2.2 Probe支持三种检查方法
2.3示例
示例1:exec方式
示例3:tcpSocket方式
示例4:就绪检测
示例5:就绪检测2
示例:启动、退出动作
扩展
pod的状态
Container生命周期
一、资源限制 业务cpu 内存
当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。
当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。
如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。
如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。
官网示例: Resource Management for Pods and Containers | Kubernetes
/Pod 和 容器 的资源请求和限制:
spec.containers[].resources.requests.cpu //定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory //定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu //定义 cpu 的资源上限
spec.containers[].resources.limits.memory //定义内存的资源上限
1.1CPU 资源单位
CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。 Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。 Kubernetes 不允许设置精度小于 1m 的 CPU 资源。
1.2 内存 资源单位
内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。 如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB 1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB
PS:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。
官方地址:为 Pod 和容器管理资源 | Kubernetes
示例1
apiVersion: v1
kind: Pod
metadata:name: frontend
spec:containers:- name: appimage: images.my-company.example/app:v4env:- name: MYSQL_ROOT_PASSWORDvalue: "password"resources:requests:memory: "64Mi"cpu: "250m" limits:memory: "128Mi"cpu: "500m"- name: log-aggregatorimage: images.my-company.example/log-aggregator:v6resources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"
此例子中的 Pod 有两个容器。每个容器的 request 值为 0.25 cpu 和 64MiB 内存,每个容器的 limit 值为 0.5 cpu 和 128MiB 内存。那么可以认为该 Pod 的总的资源 request 为 0.5 cpu 和 128 MiB 内存,总的资源 limit 为 1 cpu 和 256MiB 内存。
示例2:
vim pod2.yaml
apiVersion: v1
kind: Pod
metadata:name: frontend
spec:containers:- name: webimage: nginxenv:- name: WEB_ROOT_PASSWORDvalue: "password"resources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"- name: dbimage: mysqlenv:- name: MYSQL_ROOT_PASSWORDvalue: "abc123"resources:requests:memory: "512Mi" 128cpu: "0.5"limits:memory: "1Gi" 256cpu: "1"kubectl apply -f pod2.yaml
kubectl describe pod frontendkubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
frontend 2/2 Running 5 15m 10.244.2.4 node02 <none> <none>kubectl describe nodes node02 #由于当前虚拟机有2个CPU,所以Pod的CPU Limits一共占用了50%
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits AGE--------- ---- ------------ ---------- --------------- ------------- ---default frontend 500m (25%) 1 (50%) 128Mi (3%) 256Mi (6%) 16mkube-system kube-flannel-ds-amd64-f4pbp 100m (5%) 100m (5%) 50Mi (1%) 50Mi (1%) 19hkube-system kube-proxy-pj4wp 0 (0%) 0 (0%) 0 (0%) 0 (0%) 19h
Allocated resources:(Total limits may be over 100 percent, i.e., overcommitted.)Resource Requests Limits-------- -------- ------cpu 600m (30%) 1100m (55%)memory 178Mi (4%) 306Mi (7%)ephemeral-storage 0 (0%) 0 (0%)
二、健康检查:又称为探针(Probe)
探针是由kubelet对容器执行的定期诊断。
2.1探针的三种规则
- livenessProbe :判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。
- readinessProbe :判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。
- startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
#注:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。
2.2 Probe支持三种检查方法
- exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。
- tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。
- httpGet :对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的
每次探测都将获得以下三种结果之一:
- 成功:容器通过了诊断。
- 失败:容器未通过诊断。
- 未知:诊断失败,因此不会采取任何行动
官网示例: Configure Liveness, Readiness and Startup Probes | Kubernetes
2.3示例
示例1:exec方式
apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-exec
spec:containers:- name: livenessimage: k8s.gcr.io/busyboxargs: - /bin/sh- -c- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60livenessProbe:exec:command:- cat- /tmp/healthyfailureThreshold: 1initialDelaySeconds: 5periodSeconds: 5
- #initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。 #periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。 #failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
- #timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)
可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。
vim exec.yaml
apiVersion: v1
kind: Pod
metadata:name: liveness-execnamespace: default
spec:containers:- name: liveness-exec-containerimage: busyboximagePullPolicy: IfNotPresentcommand: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]livenessProbe:exec:command: ["test","-e","/tmp/live"]initialDelaySeconds: 1periodSeconds: 3kubectl create -f exec.yamlkubectl describe pods liveness-exec
Events:Type Reason Age From Message---- ------ ---- ---- -------Normal Scheduled 51s default-scheduler Successfully assigned default/liveness-exec-pod to node02Normal Pulled 46s kubelet, node02 Container image "busybox" already present on machineNormal Created 46s kubelet, node02 Created container liveness-exec-containerNormal Started 45s kubelet, node02 Started container liveness-exec-containerWarning Unhealthy 8s (x3 over 14s) kubelet, node02 Liveness probe failed:Normal Killing 8s kubelet, node02 Container liveness-exec-container failed liveness probe,will be restartedkubectl get pods -w
NAME READY STATUS RESTARTS AGE
liveness-exec 1/1 Running 1 85s//示例2:httpGet方式
apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-http
spec:containers:- name: livenessimage: k8s.gcr.io/livenessargs:- /serverlivenessProbe:httpGet:path: /healthzport: 8080httpHeaders:- name: Custom-Headervalue: AwesomeinitialDelaySeconds: 3periodSeconds: 3
在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。
任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。
vim httpget.yaml
apiVersion: v1
kind: Pod
metadata:name: liveness-httpgetnamespace: default
spec:containers:- name: liveness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10liveness http-get http://IP:80/index.html 延迟1秒 timeout=1s period(频率)=3
success=1 failure(失败)=3 机器会杀死容器 重启1+3 +3 kubectl create -f httpget.yamlkubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.htmlkubectl get pods
NAME READY STATUS RESTARTS AGE
liveness-httpget 1/1 Running 1 2m44s
示例3:tcpSocket方式
apiVersion: v1
kind: Pod
metadata:name: goproxylabels:app: goproxy
spec:containers:- name: goproxyimage: k8s.gcr.io/goproxy:0.1ports:- containerPort: 8080readinessProbe:tcpSocket:port: 8080initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 8080initialDelaySeconds: 15periodSeconds: 20
这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。
vim tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:name: probe-tcp
spec:containers:- name: nginximage: soscscs/myapp:v1livenessProbe:initialDelaySeconds: 5timeoutSeconds: 1tcpSocket:port: 8080periodSeconds: 10failureThreshold: 2kubectl create -f tcpsocket.yamlkubectl exec -it probe-tcp -- netstat -natp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 1/nginx: master prokubectl get pods -w
NAME READY STATUS RESTARTS AGE
probe-tcp 1/1 Running 0 1s
probe-tcp 1/1 Running 1 25s #第一次是 init(5秒) + period(10秒) * 2
probe-tcp 1/1 Running 2 45s #第二次是 period(10秒) + period(10秒) 重试了两次
probe-tcp 1/1 Running 3 65s
示例4:就绪检测
vim readiness-httpget.yaml
apiVersion: v1
kind: Pod
metadata:name: readiness-httpgetnamespace: default
spec:containers:- name: readiness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index1.htmlinitialDelaySeconds: 1periodSeconds: 3livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10kubectl create -f readiness-httpget.yaml//readiness探测失败,无法进入READY状态
kubectl get pods
NAME READY STATUS RESTARTS AGE
readiness-httpget 0/1 Running 0 18skubectl exec -it readiness-httpget sh# cd /usr/share/nginx/html/# ls50x.html index.html# echo 123 > index1.html # exitkubectl get pods
NAME READY STATUS RESTARTS AGE
readiness-httpget 1/1 Running 0 2m31skubectl exec -it readiness-httpget -- rm -rf /usr/share/nginx/html/index.htmlkubectl get pods -w
NAME READY STATUS RESTARTS AGE
readiness-httpget 1/1 Running 0 4m10s
readiness-httpget 0/1 Running 1 4m15s
示例5:就绪检测2
vim readiness-myapp.yaml
apiVersion: v1
kind: Pod
metadata:name: myapp1labels:app: myapp
spec:containers:- name: myappimage: soscscs/myapp:v1ports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index.htmlinitialDelaySeconds: 5periodSeconds: 5timeoutSeconds: 10 ---apiVersion: v1
kind: Pod
metadata:name: myapp2labels:app: myapp
spec:containers:- name: myappimage: soscscs/myapp:v1ports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index.htmlinitialDelaySeconds: 5periodSeconds: 5timeoutSeconds: 10 ---apiVersion: v1
kind: Pod
metadata:name: myapp3labels:app: myapp
spec:containers:- name: myappimage: soscscs/myapp:v1ports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index.htmlinitialDelaySeconds: 5periodSeconds: 5timeoutSeconds: 10 ---apiVersion: v1
kind: Service
metadata:name: myapp
spec:selector:app: myapptype: ClusterIPports:- name: httpport: 80targetPort: 80kubectl create -f readiness-myapp.yamlkubectl get pods,svc,endpoints -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod/myapp1 1/1 Running 0 3m42s 10.244.2.13 node02 <none> <none>
pod/myapp2 1/1 Running 0 3m42s 10.244.1.15 node01 <none> <none>
pod/myapp3 1/1 Running 0 3m42s 10.244.2.14 node02 <none> <none>NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
......
service/myapp ClusterIP 10.96.138.13 <none> 80/TCP 3m42s app=myappNAME ENDPOINTS AGE
......
endpoints/myapp 10.244.1.15:80,10.244.2.13:80,10.244.2.14:80 3m42skubectl exec -it pod/myapp1 -- rm -rf /usr/share/nginx/html/index.html//readiness探测失败,Pod 无法进入READY状态,且端点控制器将从 endpoints 中剔除删除该 Pod 的 IP 地址
kubectl get pods,svc,endpoints -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod/myapp1 0/1 Running 0 5m17s 10.244.2.13 node02 <none> <none>
pod/myapp2 1/1 Running 0 5m17s 10.244.1.15 node01 <none> <none>
pod/myapp3 1/1 Running 0 5m17s 10.244.2.14 node02 <none> <none>NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
......
service/myapp ClusterIP 10.96.138.13 <none> 80/TCP 5m17s app=myappNAME ENDPOINTS AGE
......
endpoints/myapp 10.244.1.15:80,10.244.2.14:80 5m17s
示例:启动、退出动作
vim post.yaml
apiVersion: v1
kind: Pod
metadata:name: lifecycle-demo
spec:containers:- name: lifecycle-demo-containerimage: soscscs/myapp:v1lifecycle: #此为关键字段postStart:exec:command: ["/bin/sh", "-c", "echo Hello from the postStart handler >> /var/log/nginx/message"] preStop:exec:command: ["/bin/sh", "-c", "echo Hello from the poststop handler >> /var/log/nginx/message"]volumeMounts:- name: message-logmountPath: /var/log/nginx/readOnly: falseinitContainers:- name: init-myserviceimage: soscscs/myapp:v1command: ["/bin/sh", "-c", "echo 'Hello initContainers' >> /var/log/nginx/message"]volumeMounts:- name: message-logmountPath: /var/log/nginx/readOnly: falsevolumes:- name: message-loghostPath:path: /data/volumes/nginx/log/type: DirectoryOrCreatekubectl create -f post.yamlkubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
lifecycle-demo 1/1 Running 0 2m8s 10.244.2.28 node02 <none> <none>kubectl exec -it lifecycle-demo -- cat /var/log/nginx/message
Hello initContainers
Hello from the postStart handler//在 node02 节点上查看
[root@node02 ~]# cd /data/volumes/nginx/log/
[root@node02 log]# ls
access.log error.log message
[root@node02 log]# cat message
Hello initContainers
Hello from the postStart handler
#由上可知,init Container先执行,然后当一个主容器启动后,Kubernetes 将立即发送 postStart 事件。//删除 pod 后,再在 node02 节点上查看
kubectl delete pod lifecycle-demo[root@node02 log]# cat message
Hello initContainers
Hello from the postStart handler
Hello from the poststop handler
#由上可知,当在容器被终结之前, Kubernetes 将发送一个 preStop 事件。
扩展
pod的状态
1、pending:pod已经被系统认可了,但是内部的container还没有创建出来。这里包含调度到node上的时间以及下载镜像的时间,会持续一小段时间。
2、Running:pod已经与node绑定了(调度成功),而且pod中所有的container已经创建出来,至少有一个容器在运行中,或者容器的进程正在启动或者重启状态。--这里需要注意pod虽然已经Running了,但是内部的container不一定完全可用。因此需要进一步检测container的状态。
3、Succeeded:这个状态很少出现,表明pod中的所有container已经成功的terminated了,而且不会再被拉起了。
4、Failed:pod中的所有容器都被terminated,至少一个container是非正常终止的。(退出的时候返回了一个非0的值或者是被系统直接终止)
5、unknown:由于某些原因pod的状态获取不到,有可能是由于通信问题。 一般情况下pod最常见的就是前两种状态。而且当Running的时候,需要进一步关注container的状态
Container生命周期
1、Waiting:启动到运行中间的一个等待状态。
2、Running:运行状态。
3、Terminated:终止状态。 如果没有任何异常的情况下,container应该会从Waiting状态变为Running状态,这时容器可用。
但如果长时间处于Waiting状态,container会有一个字段reason表明它所处的状态和原因,如果这个原因很容易能标识这个容器再也无法启动起来时,例如ContainerCannotRun,整个服务启动就会迅速返回。(这里是一个失败状态返回的特性,不详细阐述)
相关文章:
![](https://www.ngui.cc/images/no-images.jpg)
【云原生】kubernetes中pod(进阶)
目录 一、资源限制 业务cpu 内存 1.1CPU 资源单位 1.2 内存 资源单位 示例1 示例2: 二、健康检查:又称为探针(Probe) 2.1探针的三种规则 2.2 Probe支持三种检查方法 2.3示例 示例1:exec方式 示例3…...
![](https://www.ngui.cc/images/no-images.jpg)
Cesium 问题:获取高度值,高度值又是相对于谁来说的
文章目录 问题分析 问题 今天在开发中,甲方提出一个这样的问题,你的高度是怎么算出来的,对此,我只知道使用并不知道怎么来的,因此特意查了一番资料,希望帮助到大家 分析 在 Cesium 中,我们可以使…...
第三、四、五场面试
第三场 共享屏幕做题(三道简单题) 替换空格成%20(双指针) 删除升序链表中的重复元素(指针)有效的括号(栈) 第四场、第五场 自我介绍 项目拷打 整个项目架构rpc模块的情况分析的数…...
![](https://img-blog.csdnimg.cn/50284547c84845ccb3d553a93ca74ac6.png)
力扣-290.单词规律
Idea 先建立一个hashmap,记录s串中的每个单词以及对应的下标再建立一个hashmap,记录pattern串中相同字母以及对应的下标遍历pattern串时,遇到不同字母存到pat表中,同时将下标对应的s中的单词存入到查重test集中,因为如…...
![](https://img-blog.csdnimg.cn/img_convert/827efc4731e24360f605f4c49d9efe25.png)
常见限流算法学习
文章目录 常见限流算法学习前言限流算法基本介绍固定窗口计数器限流算法计数器限流算法相关介绍计数器限流算法的实现(基于共享变量)计数器限流算法的实现(基于Redis) 滑动窗口计数器算法滑动时间窗口算法相关介绍介绍滑动时间窗口…...
![](https://www.ngui.cc/images/no-images.jpg)
JS面试相关
深拷贝、浅拷贝、递归、优化 扁平化 柯里化 this指向原型 继承 call、apply、bind js取整的方法,parseInt第二个参数是什么 forEach和map有什么区别,使用场景? 内存泄漏的场景 原型链原型 严格模式 Js中for in 和for of的区别 slice、splice、…...
![](https://img-blog.csdnimg.cn/0d76fd4314aa476aa43edcbbd9f20648.png)
SSRF漏洞
Server-Side Request Forgery:服务器端请求伪造 目标:网站的内部系统 形成的原因 攻击者构造形成由服务器端发起请求的译者安全漏洞。 由于服务端提供了从其他服务器应用获取数据的功能,且没有对目标地址做过滤与限制。比如从指定URL地址获取网页文本内…...
![](https://img-blog.csdnimg.cn/1593e56219cd44d585f974e225d2c5d3.png)
Qt5开发及实例V2.0-第十八章-Qt-MyselfQQ实例
Qt5开发及实例V2.0-第十八章-Qt-MyselfQQ实例 第18章-Qt MyselfQQ18.1 概述18.2 、发送文件18.3 、接收文件18.4 、保证传输的安全和稳定18.5 、总结 本章相关例程源码下载1.Qt5开发及实例_CH1801.rar 下载 第18章-Qt MyselfQQ 18.1 概述 MyselfQQ是一个基于Qt5框架开发的轻量…...
![](https://img-blog.csdnimg.cn/0905588c18d44bb1aae236c4278ecd79.png)
当下IT测试技术员的求职困境
从去年被裁到现在,自由职业的我已经有一年没有按部就班打卡上班了。期间也面试了一些岗位,有首轮就挂的,也有顺利到谈薪阶段最后拿了offer的,不过最后选择了拒绝。 基于自己近一年的面试求职经历,我想聊聊当下大家在求…...
![](https://www.ngui.cc/images/no-images.jpg)
MR混合现实情景实训教学
MR混合现实技术是一种将虚拟现实与现实场景相融合的创新技术,可以广泛应用于各个领域。其中,混合现实情景实训教学是MR技术的一个重要应用场景。 在医学专业方面,医学生常常需要通过实际操作来提升自己的技能水平,然而传统的实训方…...
![](https://www.ngui.cc/images/no-images.jpg)
嵌入式C++总结
1、new delete与malloc free区别 new delete是运算符,malloc free是函数。 前者不需要传入大小,后者需要。 前者会调用构造、析构函数,后者不会。 前者不需要强制转换,后者需要。 2、智能指针 智能指针是避免忘记释放动态申请对象…...
![](https://img-blog.csdnimg.cn/221dc9dd3a3b4f028a25c0ac3d3d346b.png)
C语言之内存函数篇(3)
目录 memcpy memcpy的使用 memcpy的模拟实现 NO1. NO2. memcpy可否实现重叠空间的拷贝 my_memcpy memcpy memmove memmove memmove 分析 代码 memset memset的使用 memcmp memcmp的使用 <0 0 >0 今天我们继续介绍几个重要的内存操作函数。&…...
![](https://img-blog.csdnimg.cn/img_convert/9173914d1f4dc008c6448fe9427c6c46.png)
java面试题-学成在线项目
1、详细说说你的项目吧 从以下几个方面进行项目介绍: 1、项目的背景,包括:是自研还是外包、什么业务、服务的客户群是谁、谁去运营等问题。 2、项目的业务流程 3、项目的功能模块 4、项目的技术架构 5、个人工作职责 6、个人负责模块的详细说…...
![](https://www.ngui.cc/images/no-images.jpg)
ViewBinding——Android之视图绑定
高版本的gradle不再支持 kotlin-android-extensions插件,因此view的绑定方式也有所改变。 1.启用视图绑定 android {...viewBinding {enabled true}} 如果想在生成绑定类时忽略某个布局文件,请将 tools:viewBindingIgnore"true" 属性添加到…...
![](https://www.ngui.cc/images/no-images.jpg)
vue学习-04vue的props配置项和mixin混入
今天仍然就是敲vue的一个demo,vue的props配置项和mixin混入 props配置项 Vue.js 中的 props 是用于在父组件向子组件传递数据的配置项。通过 props,你可以将父组件中的数据传递给子组件,并在子组件中使用这些数据。以下是关于 props 配置项…...
![](https://img-blog.csdnimg.cn/e0c8f40ff80f46f99a87e858bafc1bfa.png)
九、多项式朴素贝叶斯算法(Multinomial NB,Multinomial Naive Bayes)(有监督学习)
Multinomial Naive Bayes:用于多项式模型的Naive Bayes分类器 一、算法思路 多项式Naive Bayes分类器适用于离散特征分类(如文本分类中的字数) 多叉分布通常需要整数特征计数 不过,在实际应用中,分数计数(…...
![](https://img-blog.csdnimg.cn/86d3c8cd7ebe4bcb8ecc197f74dfa78f.png)
数据结构上机练习——单链表的基本操作、头文件、类定义、main函数、多种链表算法的实现,含注释
文章目录 单链表的基本操作实现1.头文件2.类定义和多种算法的实现2.1创建空表2.2头插法创建n个元素的线性链表2.3一个带头节点的链表存放一组整数,设计一个算法删除值等于x的所有节点。2.4计算线性表中值为偶数的节点个数2.5一个带头节点的单链表heada存放一组整数&…...
![](https://img-blog.csdnimg.cn/img_convert/a5be7ea9c4f2ab6511d0efd9d3d9d0c4.jpeg)
如何通过AI视频智能分析技术,构建着装规范检测/工装穿戴检测系统?
众所周知,规范着装在很多场景中起着重要的作用。违规着装极易增加安全隐患,并且引发安全事故和质量问题,例如,在化工工厂中,倘若员工没有穿戴符合要求的特殊防护服和安全鞋,将有极大可能受到有害物质的侵害…...
![](https://img-blog.csdnimg.cn/8c8768b4cf164c429aae3c619b620eea.png)
C语言自定义类型(上)
大家好,我们又见面了,这一次我们来学习一些C语言有关于自定义类型的结构。 目录 1.结构体 2位段 1.结构体 前面我们已经学习了一些有关于结构体的知识,现在我们进行深入的学习有关于它的知识。 结构是一些值的集合,这些值称为…...
![](https://www.ngui.cc/images/no-images.jpg)
Python - 小玩意 - 圣诞树背景音乐弹窗
import turtle as t import tkinter as tk import pygame import random as r import threading import time# 初始化背景音乐 def initialize_music():file r"./music/周杰伦-蜗牛.mp3"pygame.mixer.init()pygame.mixer.music.load(file)pygame.mixer.music.play()…...
![](https://img-blog.csdnimg.cn/130f9773fde24b84aa2c078729dd708a.jpeg)
The 2023 ICPC Asia Regionals Online Contest (1) E. Magical Pair(数论 欧拉函数)
题目 T(T<10)组样例,每次给出一个n(2<n<1e18), 询问多少对,满足 答案对998244353取模,保证n-1不是998244353倍数 思路来源 OEIS、SSerxhs、官方题解 2023 ICPC 网络赛 第一场简要题解 - 知乎 题解 官方题解还没有…...
![](https://img-blog.csdnimg.cn/5f508074853e4d8aab8603a0a2387c07.gif#pic_center)
<十三>objectARX开发:模拟实现CAD的移动Move命令
一、目的 实现类似于CAD的移动命令,选择对象,移动到指定位置,移动过程中对象跟随鼠标移动。效果如下: 二、关键步骤 选择对象,打开实体判断类型:acedEntSel()、acdbOpenObject()、isKindOf()。指定基点:acedGetPoint()。移动模型,追踪光标移动对象实体:acedGrRead()…...
![](https://www.ngui.cc/images/no-images.jpg)
Autosar基础:模式管理-EcuM
ECUM目录 前言一、ECUM状态机二、Fixed和Flexible模式的区别与联系三、状态详解3.1.Startup3.2.UP3.3.RUN3.4.Sleep3.5.Shutdown三、EcuM唤醒源3.1 CAN Trcv唤醒3.2 唤醒后操作前言 根据Autosar对于模式管理的需求定义,模式管理有以下模块: ①ECU State Manager(EcuM):管理…...
![](https://www.ngui.cc/images/no-images.jpg)
代码随想录Day42 | 01背包问题| 416. 分割等和子集
01背包问题(Acwing) 有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。 第 i 件物品的体积是 vi,价值是 wi。 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。 输入…...
![](https://img-blog.csdnimg.cn/img_convert/3db94cbd708fd3100b10caf74cbd3c51.png)
UML六大关系总结
UML六大关系有:继承、关系、聚合、组合、实现、依赖。分为通过图和代码总结这些关系。 1、继承 继承(Inheritance):表示类之间的继承关系,子类继承父类的属性和方法,并可以添加自己的扩展。 继承&#x…...
![](https://img-blog.csdnimg.cn/f18b605ee9984ac1b943f30e55d29a50.jpeg)
ElementUI基本介绍及登录注册案例演示
目录 前言 一.简介 二.优缺点 三.Element完成登录注册 1. 环境配置及前端演示 1.1 安装Element-UI模块 1.2 安装axios和qs(发送get请求和post请求) 1.3 导入依赖 2 页面布局 2.1组件与界面 3.方法实现功能数据交互 3.1 通过方法进行页面跳转 3.2 axios发送get请求 …...
![](https://img-blog.csdnimg.cn/134fa22e85434f7b82b1f0aa62c0591c.png)
Python爬虫-某网酒店评论数据
前言 本文是该专栏的第6篇,后面会持续分享python爬虫案例干货,记得关注。 本文以某网的酒店数据为例,采集对应酒店的评论数据。具体思路和方法跟着笔者直接往下看正文详细内容。(附带完整代码) 注意:本文的案例“数据集”,选用的是本专栏上一篇“Python爬虫-某网酒店数…...
![](https://img-blog.csdnimg.cn/bceb5732cad64cb7a55c694c74b7f945.png)
C# Onnx Yolov8 Detect 水果识别
效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...
![](https://img-blog.csdnimg.cn/e2aa507f908241a68e4fc6cc895a53f5.png)
测试网页调用本地可执行程序(续1:解析参数中的中文编码)
学习测试网页调用本地可执行程序还遗留一个问题,即网页中调用带中文参数的命令时,本地可执行程序接收到的参数字符串里的中文都转换成了编码模式,看起来如下所示: <a href TestPageCall:-a你好>启动测试程序</a><…...
![](https://img-blog.csdnimg.cn/d9180220903c478a92e101fc07679da2.png)
C++入门知识
Hello,今天我们分享一些关于C入门的知识,看完至少让你为后面的类和对象有一定的基础,所以在讲类和对象的时候,我们需要来了解一些关于C入门的知识。 什么是C C语言是结构化和模块化的语言,适合处理较小规模的程序。对…...
![](/images/no-images.jpg)
做纸巾定制的网站/制作一个网站需要多少费用
题目均来自牛客网 1、 有以下代码片段: String str1"hello"; String str2"he" new String("llo"); System.out.println(str1str2); 请问输出的结果是:false - 解 类似问题连接: String is immutable. W…...
![](https://images2018.cnblogs.com/blog/1201826/201803/1201826-20180310125316770-1307926709.png)
wordpress 迅搜/百度推广怎么才能效果好
Python之路【第四篇】:模块 模块,用一砣代码实现了某个功能的代码集合。 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来…...
![](/images/no-images.jpg)
WordPress多站點支付插件/中国优化网
26 内积 给定长度为NNN的AAA数组,长度为KKK的BBB数组 你可以从AAA数组里取KKK个数 规则如下: 每个AiA_iAi只能被取出一次 i1oriNi1 \quad or \quad iNi1oriN 可以直接取出AiA_i\quadAi 2≤i≤N−12 \leq i \leq N-1\quad2≤i≤N…...
![](/images/no-images.jpg)
云主机如何做两个网站/百度seo排名教程
网页爬虫知识点总结 1.什么是爬虫? 爬虫就是:模拟浏览器发送请求,获取响应2.爬虫的分类,爬虫的流程 聚焦爬虫:针对特定的网站的爬虫 准备url地址 -->发送请求 获取响应–> 提取数据–> 保存获取响应–>…...
![](http://www.evil0x.com/wp-content/uploads/2016/03/0a5dfc7e48f52f9cace3.jpg)
b2b有哪些电商平台网站/百度广告推广费用
01、 与其他版本系统的区别 SVN,CVS等是集中式的版本控制系统,而Git则是分布式的版本控制系统,为什么叫分布式的版本控制系统呢? 因为Git客户端并不只是提取最新版本的文件快照,而是把代码仓库完成地镜像下来。这么一来࿰…...
![](https://img-blog.csdnimg.cn/20210529165815714.png)
单页面网站建设/怎么查看域名是一级还是二级域名
第五章 ATK-STM32MP157文件系统简介**5.1 文件系统目录简介****5.2 文件系统Qt版本****5.3 如何创建systemd 自启动服务****5.4 如何禁用Qt界面启动**(1)实验平台:正点原子STM32MP157开发板 (2)购买链接:https://item.taobao.com/item.htm?&…...