当前位置: 首页 > news >正文

淘宝电商必备的大数据应用

      在日常生活中,大家总能听到“大数据”“人工智能”的说法。现在的大数据技术应用,从大到巨大科学研究、社会信息审查、搜索引擎,小到社交联结、餐厅推荐等等,已经渗透到我们生活中的方方面面。到底大数据在电商行业可以怎么用?说到电商大数据我们必须要了解的就是电商API接口,让我慢慢告诉你!

大数据如何应用于电商行业中呢?简单来说,通过大数据分析目标消费群体提炼各种特征,在全网中通过云计算进行特征匹配,挖掘符合消费群体特征的人群,清洗挖掘出来的数据,并使用可视化技术显示数据亮点并分析,进而针对人群做出各种精准营销。

通过上述几个逐步实现精准营销的方法,无论从销售以及品牌效应推广的效果上来说,都能做到有的放矢,效果显著。那么现在就跟学员分享一下在电商行业里大数据技术可以应用到的案例。

一、大数据可视化分析

在各种各样的大数据应用中,通常会遇到三种在数据处理中急需解决的挑战:

(1)    数据调用时,效率低下

(2)    数据集合时,响应缓慢

(3)    数据罗列时,关系复杂

除了上述三种挑战之外,细化到电商企业下面,也有四种关于执行的挑战:

(1)    临时数据需求过多

(2)    需求执行时间太长

(3)    数据零散现象严重

(4)    数据专业人才紧缺

如何解决上面所说的挑战呢?其实在目前的互联网企业中,已经衍生出一部分针对电商企业进行大数据分析工作的解决方案或者应用。如各种知名云平台中所推出的提升数据处理效率的软硬件解决方案,使用交互式操作、拖拽式数据联动、在线数据表格、在线函数计算等等的自助分析方法,降低对数据专业人员的依赖。这些方法可以协助支撑各种如数据汇报、数据考核、业务稽核、营销分析、行业分析等场景的实现,从而帮助电商企业提升相关业务人员的服务能力。亦可以根据现实业务需求或业务目标,整合数据并进行建模,提供不同的分析方向、分析维度,对更深层次的应用作数据准备。

二、大数据画像分析

数据通过第一个应用可视化分析之后,可以做出更深一层的大数据应用--画像分析。画像分析是通过机器学习技术,根据不同分析维度、特征统计、样本抽取出的数据执行打标和记录,打标后将各项分析维度汇集起来,勾勒出特征画像的应用;也可以通过打标记录,机器进行自我优化模型和深度学习。典型的画像分析案例包括:

(1)    用户消费行为与需求画像

(2)    用户偏好画像

(3)    地理分析画像

(4)    设备管理画像

图片

      以用户偏好画像举例,目前用户偏好画像常常应用在购物平台、新闻媒体中,通过用户的浏览偏好或者购买偏好,推送曾浏览、收藏过的关联商品或者推送平行消费等级的多媒体广告。而电商企业也可以通过同样的用户偏好了解方法,可推进出下一步的应用:精准营销广告投放或者个性化智能推荐。

三、大数据精准投放

在大数据精准营销的业务目标下,利用了画像分析的应用,精准地圈定出可营销的用户人群,供电商企业进行广告投放使用。如果电商企业对用户的投放时间越长,那么所获得的用户特征就越明显;机器通过精准投放的自我学习,优化出更准确的用户特征;通过更准确的用户特征组合出来的人群再次加深投放,效果也会越来越好。

精准投放最重要的效果在于增大电商企业业务曝光率的同时,也增强了新用户、新客户的增长速度,可以快速提高电商企业业务的知名度,获取更多有效的资源。主要场景体现在搜索引擎广告投放、淘宝平台广告投放、微信朋友圈/文章的广告投放等等。

四、大数据智能推荐

除了精准投放之外,大数据精准营销的业务目标还可以有另一种应用方向--智能推荐,智能推荐可以通过画像分析中的结果,识别和预测各种用户的兴趣或偏好,从而有针对性地、及时地向用户主动推送所需信息,以满足不同用户的个性化需求。毕竟在信息推送的过程中,成本和风险并存,而且容易同步增长,如果想降低成本和风险的话,智能推荐应用就是最合适的解决方案之一。

图片

传统上,用户的很多消费行为,需要通过搜索引擎查找、电商查找鉴别等等方法,然后还要花费大量的时间自己去鉴别真假,挑选好坏等等,十分耗时并让用户觉得有干扰使用的情况,降低使用热度。

这种模式可以颠覆很多原有的客户体验和消费者的消费模式。智能推荐一般体现在的新闻媒体的广告/精品文章推送、直播平台的偏好推送、音乐软件的偏好推送等等场景中。给合适的用户在合适的时间、合适的场景下推荐合适的内容,达到有效的信息推荐,大幅度提升信息点击率、用户活跃度和留存率,也可以激活沉默的用户群体。

总结

在互联网内有很多广泛的应用,都离不开大数据技术的支撑,而大数据也需基于各种生活数据的整合。大数据技术本身并不神秘,而且随着时间、信息和技术的积累,大数据技术也在不断的更新拓展。我们相信随着互联网、O2O、物联网等交互应用信息越来越多,大数据技术能够为电商企业甚至更多的行业、政府去了解、认知、营销等行为起到更加重要的积极的作用。大数据分析及其相关应用在现代研究中也会越来越突出。目前来说,文中所讲述的可视化分析、画像分析、精准投放、智能推荐这四种大数据应用案例,是电商行业最可以充分利用的大数据应用。

相关文章:

淘宝电商必备的大数据应用

在日常生活中,大家总能听到“大数据”“人工智能”的说法。现在的大数据技术应用,从大到巨大科学研究、社会信息审查、搜索引擎,小到社交联结、餐厅推荐等等,已经渗透到我们生活中的方方面面。到底大数据在电商行业可以怎么用&…...

Docker版部署RocketMQ开启ACL验证

一、拉取镜像 docker pull apache/rocketmq:latest 二、准备挂载目录 mkdir /usr/local/rocketmq/data mkdir /usr/local/rocketmq/conf 三、运行 docker run \ -d \ -p 9876:9876 \ -v /usr/local/rocketmq/data/logs:/home/rocketmq/logs \ -v /usr/local/rocketmq/data…...

【RabbitMQ实战】04 RabbitMQ的基本概念:Exchange,Queue,Channel等

一、简介 Message Queue的需求由来已久,80年代最早在金融交易中,高盛等公司采用Teknekron公司的产品,当时的Message queuing软件叫做:the information bus(TIB)。 TIB被电信和通讯公司采用,路透…...

APACHE NIFI学习之—RouteOnAttribute

RouteOnAttribute 描述: 使用属性表达式语言根据其属性路由数据流,每个表达式必须返回Boolean类型的值(true或false)。 标签: attributes, routing, Attribute Expression Language, regexp, regex, Regular Expression, Expression Language, 属性, 路由, 表达式, 正则…...

防火墙网络接口下面多个外网地址,只有第一地址可以访问通其他不通

环境: 主备防火墙 8.0.75 AF-2000-FH2130B-SC 问题描述: 两台防火墙双击热备,高可用防火墙虚拟网络接口Eth4下面有多个外网地址,只有第一地址可以访问通其他不通 解决方案: 1.检查防火墙路由设置(未解决…...

【HTTP】URL结构、HTTP请求和响应的报文格式、HTTP请求的方法、常见的状态码、GET和POST有什么区别、Cookie、Session等重点知识汇总

目录 URL格式 HTTP请求和响应报文的字段? HTTP请求方法 常见的状态码 GET 和 POST 的区别 Cookie 和 Session URL格式 ?:是用来分割URL的主体部分(通常是路径)和查询字符串(query string)…...

苹果mac电脑显示内存不足如何解决?

忍痛删应用、删文档、删照片视频等等一系列操作都是众多Mac用户清理内存空间的方法之一,悲催的是一顿“猛如虎的操作”下,释放出来的内存空间却少的可怜,原因很简单,这样释放内存空间是无效的。如何合理有效的清理内存空间&#x…...

如何在Windows 10上安装Go并搭建本地编程环境

引言 Go是在谷歌的挫折中诞生的编程语言。开发人员不得不不断地选择一种执行效率高但需要长时间编译的语言,或者选择一种易于编程但在生产环境中运行效率低的语言。Go被设计为同时提供这三种功能:快速编译、易于编程和在生产中高效执行。 虽然Go是一种通用的编程语…...

[Realtek sdk-3.4.14b]RTL8197FH-VG 2.4G to WAN吞吐量低于60%的问题分析及解决方案

问题描述 RTL8197FH-VG 2.4G wifi to WAN吞吐量低于65%的标准,正常2T2R的wifi 300Mbps x 65% = 195Mbps,但是实际只能跑到160Mbps,这个时候CPU的idl已经为0,sirq占用率达到98%左右 网络拓扑 一台PC通过2.4G WiFi连接到RTL8197FH-VG,另外一台PC直接通过WAN口连接到RTL8197…...

软件设计模式系列之十八——迭代器模式

1 模式的定义 迭代器模式是一种行为型设计模式,它允许客户端逐个访问一个聚合对象中的元素,而不暴露该对象的内部表示。迭代器模式提供了一种统一的方式来遍历不同类型的集合,使客户端代码更加简洁和可复用。 2 举例说明 为了更好地理解迭…...

前端项目配置 prettier、eslint、lint-stages、husky、commitlint 、style-lint设置代码书写和提交规范

prettier中文网:Options Prettier 中文网 eslint中文网 :ESLint 中文网 github husky : https://github.com/typicode/husky commitlint.js 官网:commitlint - Lint commit messages 、github:GitHub - conventiona…...

如何开始着手一篇Meta分析 | Meta分析的流程及方法

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…...

【PID控制技术】

PID控制技术 简介控制原理相关术语调参技巧相互作用 相似算法与PWM对比 应用范围优缺点硬件支持 简介 PID控制是一种在工业过程控制中广泛应用的控制策略,其全称是比例-积分-微分(Proportional Integral Derivative)控制。它的基本原理是根据…...

docker openjdk:8-jdk-alpine 修改时区、添加字体

新建Dockerfile文件,制作新镜像 FROM openjdk:8-jdk-alpine 1、解决字体问题 RUN apk add --update ttf-dejavu fontconfig && rm -rf /var/cache/apk/* 2、解决时差问题 # 解决时差8小时问题ENV TZAsia/ShanghaiRUN ln -snf /usr/share/zoneinfo/$TZ /et…...

9+单细胞+实验验证,探讨单基因对癌细胞转移作用的思路方向

今天给同学们分享一篇单细胞实验的生信文章“Identification of RAC1 in promoting brain metastasis of lung adenocarcinoma using single-cell transcriptome sequencing”,这篇文章于2023年5月18日发表在Cell Death Dis期刊上,影响因子为9。 本研究旨…...

《计算机视觉中的多视图几何》笔记(7)

7 Computation of the Camera Matrix P P P 这章讲的是摄像机参数估计。摄像机标定,本质上就是求摄像机矩阵 P P P,当我们知道足够多的 X ↔ x X \leftrightarrow x X↔x,我们该如何计算 P P P?如果知道3D和2D点的对应&#xff…...

Python经典练习题(四)

文章目录 🍀第一题🍀第二题🍀第三题 🍀第一题 题目:打印出如下图案(菱形): 我们首先分析一下,本题实现的步骤主要有两个,分别是前四行和后三行 前四行:第一…...

Mac Pro在重装系统时提示“未能与恢复服务器取得联系”

检查网络连接: 确保你的Mac Pro连接到稳定的网络。尝试更换其他网络,例如切换到不同的Wi-Fi或使用有线连接。 系统时间校正: 错误的系统时间有时会导致与恢复服务器的连接问题。在恢复模式下打开终端(在实用工具菜单中选择终端&a…...

【C/C++】指针常量、常量指针、指向常量的常指针

目录 1.概念2. const pointer3. pointer to a constant3.1 (pointer to a constant)-constant3.2 poiner-constant3.3 (pointer to a constant)-variable3.4 poiner-variable3.5 多层级关系时的兼容3.6 用处 4. a constant pointer to a constant 1.概念 首先明确这几个术语的…...

【VUE复习·4】计算属性computed:原理、完整写法(不常用)、与 methods 的区别、简写(最常用)、应用案例!

总览 1.简介计算属性 2.computed 与 methods 的区别 3.computed 的简写(不修改计算属性,只显示) 4.经典应用场景 一、计算属性 1.为什么需要计算属性? 首先,如果我们要写一个插值语法,而 {{ }} 内的内容…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

线程同步:确保多线程程序的安全与高效!

全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

ESP32读取DHT11温湿度数据

芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...