数学术语之源——群同态的“核(kernel)”
1. “kernel”这个术语在群论中的起源
Ivar Fredholm 在 1903 年的第27期Acta Math 数学学报发表的一篇关于“积分方程(INTEGRAL EQUATIONS)”的著名论文(“关于一类函数方程(Sur une classe des équations fonctionnelles)”)中使用了法语“noyau(核)”(365-390页)。
David Hilbert在他的<<线性积分方程一般理论原理>>(Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen)(Nachrichten von d) 中将其翻译成德语,称为“Kern”(Nachrichten von d. Königl. Ges. d. Wissensch. zu Göttingen (Math.-physik. Kl.)(1904年) 第49页)。
在英语中,“kernel”在数学中作为术语最早出现在M. Bôcher的著作<<积分方程研究导论>>(Introduction to the Study of Integral Equations)一书中(1909年),书中将其描述为“K is called the kernel of these equations(称K为这些积分方程的核)”(引自牛津英语词典)。参见 G. Birkhoff 和 E. Kreyszig (1984)“泛函分析的建立”,Historia Mathematica, 11,258-321。
到 A. Zygmund 的三角级数 (1935) 时代,“kernel”已成为Fourier分析中的一个既定术语。通过JSTOR 搜索发现,在 Charles N. Moore 的“On the Application of Borel's Method to the Sumation of Fourier's Series”中发现了“Fejér 核”和“Dirichlet 核”(Proceedings of the National Academy, 11, (1925), 284-287),但这不太可能是这些术语的首次公开使用。
“kernel”使用Fourier理论进入统计学,描述谱密度和概率密度函数的估计。 JSTOR 搜索发现,E. F. Schuster(数学统计年鉴,40,(1969年),第 1187 页)指的是“所谓的核估计类”,由 M. Rosenblatt 在“关于密度函数的一些非参数估计的评述”中引入的(Annals of Mathematical Statistics,27,(1956年),第832-837页)。早期的“Fejér kernel”曾用于 U. Grenander 和 M.Rosenblatt 的“平稳随机过程产生的时间序列的统计谱分析(Statistical Spectral Analysis of Time Series Arising from Stationary Stochastic Processes)”,Annals of Mathematical Statistics,24,(1953年),第537-558页。另一个在时间序列分析中特别流行的术语是“window”。另见“Fejér kernel”。
“kernel”在代数中的使用似乎与其在积分方程和Fourier分析中的使用无关。 L. Pontrjagin 于 1931 年在《数学》杂志的论文“Über den algebraischen Inhalt topologischer Dualitätssätze”的第 102 页上使用了该术语。年鉴 105。《牛津英语词典》引用了Pontrjagin的<<拓扑群 i.11>>( Topological Groups)中的以下内容(由 E. Lehmer 1946年翻译)“在同态 g 下被映射到群 G* 的玄元上的群 G 的所有元素的集合称为该同态的核。”
G. D. Birkhoff 和 S. A. MacLane <<现代代数综述>>( A Survey of Modern Algebra)第 3 版 1965 年,第 213-214 页将同态和核的概念应用于被视为加法下Abel群的向量空间之间的线性变换 T 。 他们评论说:“由于 O 是群的玄元,因此 T 的零空间正是被视为群同态的 T 的核。” 请参阅条目 NULL SPACE。
2. “kernel”这个术语在群论中的含义
从上面第1点可以看出,“kernel”这个术语在数学的多个分支都有使用,至少在积分方程、Fourier分析、群论中都有作为术语使用。但就这个术语的确切含义,只有放到具体的数学分支中的知识点上才能说明。或许,当初引入这个术语的作者认为这个特征比较核心,因此用这个词描述。比如在Fourier分析中,“核”指的是在某个范围内的积分恒为1。
关于核在代数群论中的含义,引用Michael Artin 在他的书中的说明,或许能导出“核”在群论中的含义。书中说,“核非常重要,原因在于它控制着整个同态。它不仅告知了我们G 中的哪些元素被映射到G’的幺元,而且还告知了我们G中的哪些元素对在G’中具有相同的像。” 这或许就是当初群论中引入术语“核”来描述这一数学现象的原因。
参考资料:
1. Earliest Known Uses of Some of the Words of Mathematics (K)
Earliest Known Uses of Some of the Words of Mathematics (K)
更多术语:
https://web.archive.org/web/20170612233228/http://jeff560.tripod.com/mathsym.html
2. <<Algebra>> Michael Artin, 2th
相关文章:
数学术语之源——群同态的“核(kernel)”
1. “kernel”这个术语在群论中的起源 Ivar Fredholm 在 1903 年的第27期Acta Math 数学学报发表的一篇关于“积分方程(INTEGRAL EQUATIONS)”的著名论文(“关于一类函数方程(Sur une classe des quations fonctionnelles)”)中使用了法语“noyau(核)”(365-390页)。 David …...

defcon-quals 2023 crackme.tscript.dso wp
将dso文件放到data/ExampleModule目录下,编辑ExampleModule.tscript文件 function ExampleModule::onCreate(%this) { trace(true); exec("./crackme"); __main("aaaaaaaa"); quit(); } 然后点击主目录下的Torque3D-debug.bat就可以在生成的c…...

前端开发 vs. 后端开发:编程之路的选择
文章目录 前端开发:用户界面的创造者1. HTML/CSS/JavaScript:2. 用户体验设计:3. 响应式设计:4. 前端框架: 后端开发:数据和逻辑的构建者1. 服务器端编程:2. 数据库:3. 安全性&#…...
算法练习4——删除有序数组中的重复项 II
LeetCode 80 删除有序数组中的重复项 II 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 …...

【C++进阶(六)】STL大法--栈和队列深度剖析优先级队列适配器原理
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:C从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学习C 🔝🔝 栈和队列 1. 前言2. 栈和队列的接口函数熟悉3. …...

linux opensuse使用mtk烧录工具flashtool
环境 linux发行版:opensuse leap 15.5 工具:SP_Flash_Tool_Selector_exe_Linux_v1.2316.00.100.rar 或其他版本 目标:mtk设备 下载链接 https://download.csdn.net/download/zmlovelx/88382784 或网络搜索。 使用 opensuse可直接解压后使…...

Visio如何对文本打下标、上标,以及插入公式编辑器等问题(已解决)
解决这个问题的本质问题,就是在Visio中插入公式编辑器(这不是visio的常用命令,需要添加)。 打开Visio--》文件--选项 点击选项,弹出对话框。在自定义功能区中,点击 常用命令,在下拉选项中&#…...

快速将iPhone大量照片快速传输到电脑的办法!
很多使用iPhone 的朋友要将照片传到电脑时,第一时间都只想到用iTunes 或iCloud,但这2个工具真的都非常难用,今天小编分享牛学长苹果数据管理工具的照片传输功能,他可以快速的将iPhone照片传输到电脑上,并且支持最新的i…...
TCP/IP协议簇包含的协议
应用层(Application Layer): HTTP(Hypertext Transfer Protocol):用于Web浏览器和Web服务器之间的通信。HTTPS(Hypertext Transfer Protocol Secure):安全的HTTP版本&…...

天地图绘制区域图层
背景: 业务方要求将 原效果图 参考效果图 最终实现效果 变更点: 1.将原有的高德地图改为天地图 2.呈现形式修改:加两层遮罩:半透明遮罩层mask区域覆盖物mask 实现过程: 1.更换地图引入源 <link rel"style…...
git权限不够:Ask a project Owner or Maintainer to create a default branch
新仓库还未创建任何分支时,Developer角色时首次提交代码,抛如下异常 remote: GitLab: remote: A default branch (e.g. master) does not yet exist for galaxy/apache-jspf-project remote: Ask a project Owner or Maintainer to cre…...

AI在材料科学中的应用
7 AI在材料科学中的应用 在这一部分,我们将讨论AI技术在材料科学中的应用。首先,我们将介绍晶体材料的概述,并详细定义晶体材料的物理对称性,具体在第7.1节中讨论。接下来,我们将在第7.2节和第7.3节中讨论两个常见且基…...

VSCode快速设置heder和main函数
快速设置header: 点击左侧的齿轮,选择User Snippets: 在出现的选择框中输入python,选择python.json 在最外层的{ }内部添加以下内容 "HEADER": {"prefix": "header","body": ["# -*- encoding:…...

JimuReport积木报表 v1.6.2 版本正式发布—开源免费的低代码报表
项目介绍 一款免费的数据可视化报表,含报表和大屏设计,像搭建积木一样在线设计报表!功能涵盖,数据报表、打印设计、图表报表、大屏设计等! Web 版报表设计器,类似于excel操作风格,通过拖拽完成报…...
sqlsession对象为什么不能被共享?
因为它是一个非线程安全的对象。每个SQLSession对象都维护了一个独立的数据库连接,以及与该连接相关的事务和缓存。如果多个线程共享同一个SQLSession对象,可能会导致数据混乱、事务冲突等问题。另外,SQLSession对象还包含了一级缓存…...

MySQL MMM高可用架构
MySQL MMM高可用架构一、MMM概述1、MMM简介2、MMM高可用架构3、MMM故障切换流程 二、MMM高可用双主双从架构部署1、配置主主复制(master),主从复制(slave)1)修改 Master1的MySQL配置文件2)把配置…...

Spring Boot中配置文件介绍及其使用教程
目录 一、配置文件介绍 二、配置简单数据 三、配置对象数据 四、配置集合数据 五、读取配置文件数据 六、占位符的使用 一、配置文件介绍 SpringBoot项目中,大部分配置都有默认值,但如果想替换默认配置的话,就可以使用application.prop…...
Hobby脚本自动化工具
Hobby脚本自动化工具 功能简介:可以按照指定编排的配置文件,按顺序执行并监听 使用场景:可以用在前期信息收集的步骤上,将一些常见的脚本进行归纳,并编写成配置文档进行自动化处理 优点:可以扩展性强&am…...

Matlab随机数的产生
1、常见分布随机数的产生 1.1 二项分布 在贝努力试验中,某事件A发生的概率为p,重复该实验n次,X表示这n次实验中A发生的次数,则随机变量X服从的概率分布律(概率密度)为 记为 binopdf(x,n,p) p…...

计算机网络 第四章:网络层
一.网络层概述 1.1分组转发和路由选择 网络层的主要任务就是将分组从源主机经过多个网络和多段链路传输到目的主机,可以将该任务划分为分组转发和路由选择两种重要的功能。 如图所示:这些异构型网络如果只是需要各自内部通信,那它们只需要实…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...