当前位置: 首页 > news >正文

【深度学习实验】卷积神经网络(二):自定义简单的二维卷积神经网络

目录

一、实验介绍

二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入必要的工具包

1. 二维互相关运算(corr2d)

2. 二维卷积层类(Conv2D)

a. __init__(初始化)

b. forward(前向传播函数)

3. 模型训练


一、实验介绍

        本实验实现了一个简单的二维卷积神经网络,包括二维互相关运算函数和自定义二维卷积层类,并对一个随机生成是二维张量进行了卷积操作。

 二、实验环境

    本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

ChatGPT:

        卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、计算机视觉和模式识别等领域。它的设计灵感来自于生物学中视觉皮层的工作原理。

        卷积神经网络通过多个卷积层、池化层全连接层组成。

  • 卷积层主要用于提取图像的局部特征,通过卷积操作和激活函数的处理,可以学习到图像的特征表示。
  • 池化层则用于降低特征图的维度,减少参数数量,同时保留主要的特征信息。
  • 全连接层则用于将提取到的特征映射到不同类别的概率上,进行分类或回归任务。

        卷积神经网络在图像处理方面具有很强的优势,它能够自动学习到具有层次结构的特征表示,并且对平移、缩放和旋转等图像变换具有一定的不变性。这些特点使得卷积神经网络成为图像分类、目标检测、语义分割等任务的首选模型。除了图像处理,卷积神经网络也可以应用于其他领域,如自然语言处理和时间序列分析。通过将文本或时间序列数据转换成二维形式,可以利用卷积神经网络进行相关任务的处理。

0. 导入必要的工具包

import torch
from torch import nn
import torch.nn.functional as F
  • torch.nn:PyTorch中的神经网络模块,提供了各种神经网络层和函数。
  • torch.nn.functional:PyTorch中的函数形式的神经网络层,如激活函数和损失函数等。
 

1. 二维互相关运算(corr2d)

【深度学习实验】卷积神经网络(一):卷积运算及其Pytorch实现(一维卷积:窄卷积、宽卷积、等宽卷积;二维卷积)_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/133278425?spm=1001.2014.3001.5501

        如前文所示,在计算卷积的过程中,需要进行卷积核翻转.在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。

  • 翻转指从两个维度(从 上到下、从左到右)颠倒次序,即旋转180度。
  • 互相关和卷积的区别仅仅在于卷积核是否进行翻转.因此互相关也可以称为不翻转卷积

        在神经网络中使用卷积是为了进行特征抽取卷积核是否进行翻转和其特征抽取的能力无关。特别是当卷积核是可学习的参数时,卷积和互相关在能力上是等价的.因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积.事实上,很多深度学习工具中卷积操作其实都是互相关操作。

def corr2d(X, K): h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y

  • 输入:输入张量X和卷积核张量K。
  • 输出:互相关运算结果张量Y,形状为(X.shape[0] - K.shape[0] + 1, X.shape[1] - K.shape[1] + 1)。
  • 通过两个嵌套的循环遍历输出张量Y的每个元素,使用局部相乘和求和的方式计算互相关运算结果。

2. 二维卷积层类(Conv2D)

class Conv2D(nn.Module):def __init__(self, kernel_size, weight=None):super().__init__()if weight is not None:self.weight = weightelse:self.weight = nn.Parameter(torch.rand(kernel_size))self.bias = nn.Parameter(torch.zeros(1))def forward(self, x):return corr2d(x, self.weight) + self.bias

a. __init__(初始化)

  • 接受一个kernel_size参数作为卷积核的大小,并可选地接受一个weight参数作为卷积核的权重。
  • 如果没有提供weight参数,则会随机生成一个与kernel_size相同形状的权重,并将其设置为可训练的参数(nn.Parameter)。
  • 定义了一个偏置项bias,也将其设置为可训练的参数。

b. forward(前向传播函数)

        调用之前的corr2d函数,对输入x和卷积核权重self.weight进行相关性计算,并将计算结果与偏置项self.bias相加,作为前向传播的输出。

3. 模型测试

# 由于卷积层还未实现多通道,所以我们的图像也默认是单通道的
fake_image = torch.randn((5,5))
# 实例化卷积算子
conv = Conv2D(kernel_size=(3,3))
output = conv(fake_image)

        创建了一个大小为(5, 5)的随机输入图像fake_image,然后实例化了Conv2D类,传入了卷积核大小为(3, 3)。接着调用conv对象的forward方法,对fake_image进行卷积操作,并将结果保存在output变量中。最后输出output的形状。

注意:本实验仅简单的实现了一个二维卷积层,只支持单通道的卷积操作,且不包含包含训练和优化等过程,欲知后事如何,请听下回分解。

相关文章:

【深度学习实验】卷积神经网络(二):自定义简单的二维卷积神经网络

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 二维互相关运算(corr2d) 2. 二维卷积层类(Conv2D) a. __init__(初始化) b. forward(前向传…...

Socket网络编程练习题三:客户端上传文件到服务器

题目 客户端:将本地文件上传到服务器,接收服务器的反馈服务端:接收客户端上传的文件,上传完毕之后给出反馈 代码实战 1、客户端代码 package com.heima;import java.io.*; import java.net.Socket;public class Client {publi…...

Excel技巧之【锁定工作簿】

Excel工作簿是Excel工作区中一个或多个工作表的集合,我们知道Excel可以设置锁定工作表,防止意外或被他人修改,但可能有小伙伴不知道,Excel工作簿也同样可以设置锁定,防止更改。 那工作簿锁定后会怎么样呢?…...

用于自然语言处理的 Python:理解文本数据

一、说明 Python是一种功能强大的编程语言,在自然语言处理(NLP)领域获得了极大的普及。凭借其丰富的库集,Python 为处理和分析文本数据提供了一个全面的生态系统。在本文中,我们将介绍 Python for NLP 的一些基础知识&…...

历史服务器

二、配置历史服务器 在spark-3.1.1-bin-hadoop2.7/conf/spark-defaults.conf添加以下配置,其中d:/log/spark为日志保存位置 spark.eventLog.enabled true spark.eventLog.dir file:///d:/log/spark spark.eventLog.compress true spark.history.fs.logDirectory fil…...

竞赛无人机搭积木式编程(四)---2023年TI电赛G题空地协同智能消防系统(无人机部分)

竞赛无人机搭积木式编程(四) ---2023年TI电赛G题空地协同智能消防系统(无人机部分) 无名小哥 2023年9月15日 赛题分析与解题思路综述 飞控用户在学习了TI电赛往届真题开源方案以及用户自定义航点自动飞行功能方案讲解后&#x…...

深入理解JavaScript中的事件冒泡与事件捕获

在JavaScript中,事件是交互式网页开发中的关键概念之一。了解事件冒泡和事件捕获是成为一名优秀的前端开发者所必需的技能之一。本文将深入探讨这两个概念,解释它们是如何工作的,以及如何在实际应用中使用它们来处理事件。 一.什么是事件冒泡…...

纯css html 真实水滴效果

惯例,不多说直接上图 秉承着开源精神,我们将这段代码无私地分享给大家,因为我们深信,信息的共享和互相学习是推动科技进步的关键。我们鼓励大家在使用这段代码的同时,也能够将其中的原理、思想和经验分享给更多的人。 这份代码是我们团队用心…...

HBASE集群主节点迁移割接手动操作步骤

HBASE集群主节点迁移割接手动操作步骤 HBASE集群主节点指的是包含zk、nn、HM和rm服务的节点,一般这类服务都是一起复用在同一批节点上,我把这一类节点统称为HBASE集群主节点。 本文中使用了rsync、pssh等工具,这类是开源的,自己…...

TRB爆仓分析,套利分析,行情判断!

毫无疑问昨日TRB又成为涨幅榜的明星,总结下来,多军赚麻,空头爆仓,套利爽歪歪! 先说风险最小的套利情况,这里两种套利都能实现收益。 现货与永续合约的资金费率套利年化资金费率达到惊人的3285%——DeFi的…...

LVGL - RV1109 LVGL UI刷新效率优化-02

说明 前面好早写过一个文章,说明如何把LVGL移到RV1109上的操作,使用DRM方式!但出现刷新效率不高的问题! 因为一直没有真正的应用在产品中,所以也就放下了! 最近开发上需要考虑低成本,低内存的…...

5、布局管理器

5、布局管理器 一、流式布局 package com.dryant.lesson1;import java.awt.*;public class TestFlowLayout {public static void main(String[] args) {Frame frame new Frame();Button button1 new Button("bt1");Button button2 new Button("bt2");…...

What is a UDP Flood Attack?

用户数据报协议 (UDP) 是计算机网络中使用的无连接、不可靠的协议。它在互联网协议 (IP) 的传输层上运行,并提供跨网络的快速、高效的数据传输。与TCP(其更可靠的对应物)不同,UDP不提…...

多核 ARM Server 性能调优

概述 thinkforce ARM Server是多核心ARM服务器,硬件环境资源如下: CPU信息如下: yuxunyuxun:/$ lscpu Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian …...

oracle执行计划中,同一条语句块,在不同情况下执行计划不一样问题。子查询,union 导致索引失效。

场景: 需要获取部分数据集(视图)的业务时间最大值,希望只通过一条语句获取多个的最大值。 则使用select (视图1业务时间最大值),(视图2业务时间最大值),(视图3业务时间最大值) from dual 程序执行过程中,发现语句执行较慢,则进行s…...

【新的小主机】向日葵远程控制ubuntu

向日葵远程控制ubuntu 一、简介二、问题及解决方法2.1 向日葵远程连接Ubuntu22主机黑屏?2.2 Ubuntu如何向日葵开机自启?2.3 无显示器情况下,windows远程桌面连接Ubuntu? 三、待续。。。 一、简介 系统:ubuntu22.04.3 目的&#…...

在Android studio高版本上使用低版本的Github项目库报错未能解析:Landroid/support/v4/app/FrageActivity;

我在我的项目中有一个导包: // 基础依赖包,必须要依赖 沉浸式狀態欄 implementation com.gyf.immersionbar:immersionbar:3.0.0 但是我的as版本比较高,我使用这个导包里面的方法会直接报错: java.lang.NoClassDefFoundError: Failed resolution of: Landroid/suppor…...

自动混剪多段视频、合并音频、添加文案的技巧分享

在如今的社交媒体时代,视频的重要性越来越被人们所重视。许多人喜欢记录生活中的美好瞬间,并将其制作成视频分享给朋友和家人。然而,对于那些拍摄了大量视频的人来说,一个一个地进行剪辑和合并可能是一项令人头痛的任务。但是&…...

学习笔记——BSGS

众所周知,北上广深是中国非常一线的城市,北京是首都,地处…… 正片开始! 一、BSGS基础算法 实现目标: A x ≡ B ( m o d P ) , ( gcd ⁡ ( P , A ) 1 ) A^x\equiv B(\mod P),(\gcd(P,A)1) Ax≡B(modP),(gcd(P,A)1)…...

【AI视野·今日NLP 自然语言处理论文速览 第四十期】Mon, 25 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Mon, 25 Sep 2023 Totally 46 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs Authors Justin C…...

Linux C/C++下收集指定域名的子域名信息(类似dnsmap实现)

我们知道dnsmap是一个工具,主要用于收集指定域名的子域名信息。它对于渗透测试人员在基础结构安全评估的信息收集和枚举阶段非常有用,可以帮助他们发现目标公司的IP网络地址段、域名等信息。 dnsmap的操作原理 dnsmap(DNS Mapping&#xff…...

linux-定时任务

目录 一、crond命令 1、什么是计划任务 2、crond服务的概念 3、crontab 二、at命令 1、at任务的概念 三、邮件服务 1、概念 2、启动postfix 四、mailx命令 1、三个概念: 2、交互式发邮件 3、非交互式发邮件 四、cron定时任务实践 1、系统定时任务配置…...

在Spring Boot项目中使用Redisson

在Spring Boot项目中使用Redisson Redisson简介 Redisson官网仓库 Redisson中文文档 Redission是一个基于Java的分布式缓存和分布式任务调度框架,用于处理分布式系统中的缓存和任务队列。它是一个开源项目,旨在简化分布式系统的开发和管理。 以下是…...

JavaScript 函数柯里化

🎶什么是柯里化 柯里化(Currying)是把接受多个参数的函数变换成接受一个单一参数(最初函数的第一个参数)的函数,并且返回接受余下的参数且返回结果的新函数的技术。 🎡简单的函数柯里化的实现 // ------------- 原函数…...

springboot实现ACL+RBAC权限体系

本文基于web系统的权限控制非常重要的前提下,从ALC和RBAC权限控制两个方面,介绍如何在springboot项目中实现一个完整的权限体系。 源码下载 :https://gitee.com/skyblue0678/springboot-demo 序章 一个后台管理系统,基本都有一套…...

C++20协程示例

C20协程示例 认识协程 在C中&#xff0c;协程就是一个可以暂停和恢复的函数。 包含co_wait、co_yield、co_return关键字的都可以叫协程。 看一个例子&#xff1a; MyCoroGenerator<int> testFunc(int n) {std::cout << "Begin testFunc" << s…...

【Verilog 教程】6.2Verilog任务

关键词&#xff1a;任务 任务与函数的区别 和函数一样&#xff0c;任务&#xff08;task&#xff09;可以用来描述共同的代码段&#xff0c;并在模块内任意位置被调用&#xff0c;让代码更加的直观易读。函数一般用于组合逻辑的各种转换和计算&#xff0c;而任务更像一个过程&a…...

Spring修炼之路(1)基础入门

一、简介 1.1Spring概述 Spring框架是一个轻量级的Java开发框架&#xff0c;它提供了一系列底层容器和基础设施&#xff0c;并可以和大量常用的开源框架无缝集成&#xff0c;可以说是开发Java EE应用程序的必备。Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器&…...

GANs学习记录

GAN 基于GAN的研究识别相关不同背景目标图像 可以用Augmentation2021.3.15 基于GAN的研究 是通过GAN 进行图像重建&#xff0c;恢复细节&#xff0c;去模糊&#xff0c;提高图像质量&#xff0c;图像还原&#xff0c;去噪等等。 识别相关 一种基于生成对抗网络的训练样本扩充…...

Flink-CDC——MySQL、SqlSqlServer、Oracle、达梦等数据库开启日志方法

目录 1. 前言 2. 数据源安装与配置 2.1 MySQL 2.1.1 安装 2.1.2 CDC 配置 2.2 Postgresql 2.2.1 安装 2.2.2 CDC 配置 2.3 Oracle 2.3.1 安装 2.3.2 CDC 配置 2.4 SQLServer 2.4.1 安装 2.4.2 CDC 配置 2.5达梦 2.4.1安装 2.4.2CDC配置 3. 验证 3.1 Flink版…...

wordpress三级联动/免费网站推广网站不用下载

控制论的创始人维纳认为&#xff1a;信息就是信息&#xff0c;不是物质也不是能量。也就是说&#xff0c;信息与物质、能量是有区别的。同时&#xff0c;信息与物质、能量之间也存在着密切的关系。物质、能量、信息是构成现实世界的三大要素。只要事物之间的相互联系和相互作用…...

研发网站要多长时间/搜索引擎优化的分类

此文是依据赵磊在【QCON高可用架构群】中的分享内容整理而成。转载请事先联系赵磊及相关编辑。 赵磊&#xff0c;Uber高级project师&#xff0c;08年上海交通大学毕业。曾就职于微软。后添加Facebook主要负责Messenger的后端消息服务。这个系统在当时支持Facebook全球5亿人同一…...

做网站老板嫌弃太丑谁的锅/网页设计用什么软件做

1.内存溢出相对于内存泄漏来说&#xff0c;尽管更容易被理解&#xff0c;但是同样的&#xff0c;内存溢出也是引发程序崩溃的罪魁祸首之一。 2.由于GC一致在发展&#xff0c;所有一般情况先&#xff0c;除非应用程序占用的内存增长速度非常快&#xff0c;造成垃圾回收根不上内存…...

泾阳做网站/域名注册查询阿里云

正整数整数零正有理数有理数负整数正分数正分数有理数0分数负整数负整数负有理数负分数2、正数和负数用来表示具有相反意义的数。(二)数轴1、定义&#xff1a;规定了原点、正方向和单位长度的直线叫做数轴。2、数轴的三要素是&#xff1a;原点、正方向、单位长度。(三)相反数1、…...

最好的做法是/外贸网站推广seo

第一年参加现场赛&#xff0c;比赛的时候就A了这一道&#xff0c;基本全场都A的签到题竟然A不出来&#xff0c;结果题目重现的时候1A&#xff0c;好受打击 ORZ..... 题目链接&#xff1a;http://acm.hdu.edu.cn/showproblem.php?pid4800 题目大意&#xff1a;给定C(3,N)支队伍…...

wordpress模板定制/google推广费用

首先&#xff0c;使用“declare-rel”&#xff0c;“declare-var”&#xff0c;“rule”和“query”的格式是SMT-LIB2的自定义扩展 . “declare-var”功能可以方便地从多个规则中省略绑定变量 . 它还允许使用分层否定来制定Datalog规则&#xff0c;并且这是您应该从分层否定中获…...