当前位置: 首页 > news >正文

GANs学习记录

GAN

  • 基于GAN的研究
  • 识别相关
  • 不同背景+目标图像 可以用Augmentation
  • 2021.3.15

基于GAN的研究

是通过GAN 进行图像重建,恢复细节,去模糊,提高图像质量,图像还原,去噪等等。

识别相关

  • 一种基于生成对抗网络的训练样本扩充。1
    通过截取训练样本中数目少的类别目标图像,利用生成对抗网络生成大量异构的目标图像并融合到背景图像中作为训练样本,丰富目标信息,有效扩充训练样本集。
    考虑原始样本中海参、海胆和海星目标数目多,而贝壳目标数量少的特点,将原始样本训练集和验证集图像中的1 015 个贝壳目标截取出来,作为生成对抗网络的输入,训练后生成1 402张异构的贝壳图像,通过与不同背景融合生成1 000 张有效样本图像
  • 基于学习的夜视图像增强模型2。利用GAN强大的生成能力,生成与夜视图像对应的同一场景下的白天图像
  • 用于半监督 GAN 网络3训练的标记样本中的正样本从标记数据中直接进行切取,并利用hard negative mining 获取负样本。
    Hard negative mining 对于负样本的选取,采取 hard negative mining 的方法,而不是随机截取。利用训练好的全监督检测器对标记图像进行检测,然后对检测结果按照检测得到的置信度按照降序进行排序,选取排在靠前的非正样本作为负样本。为保持正负样本的平衡,我们维持正负样本的比例为 1 ∶1。
  • 在少样本情况下生成高分辨率、高质量的遥感舰船图像4。针对现有的生成图像样本模糊、模式崩溃(理想情况下,生成模型应该能够生成10个数字,如果只能生成其中的几个,而错失其它的模式,则我们称这种现象为模式崩溃)等问题。

不同背景+目标图像 可以用Augmentation

Augmentation

2021.3.15

  1. Auxiliary Classifier GAN 合成高分辨率的真实感图像
  2. Adversarial Autoencoder 对抗自动编码器,使用Autoencoder进行对抗学习,AAE相比原始GAN显然具有了很多让生成结果更可控的特性,比DCGAN产生的图片质量更高
  3. BEGAN 结合了从Wasserstein距离得出的损失,用于训练基于自动编码器的生成对抗网络,在更高的分辨率下,提高视觉质量
  4. BicycleGAN 图像到图像的转换,在条件生成建模环境中对可能的输出分布进行建模
  5. Boundary-Seeking GAN 基于边界寻找的gan,生成图片
  6. Cluster GAN 使用GAN进行聚类
  7. Conditional GAN生成不属于训练标签的描述性标签,指定生成某一个具体数字的图像
  8. Context-Conditional GAN 图像呈现给鉴别器网络,以判断它们是否是真实的(未更改的训练图像)
  9. Context Encoder 提出了上下文编码器-一种经过训练的卷积神经网络,可以生成以周围环境为条件的任意图像区域的内容。
  10. Coupled GAN 仅从边际分布中抽取样本来学习联合分布,领域自适应和图像转换
  11. CycleGAN 将图像从源域X转换为目标域Y,集合样式转移,对象变形,季节转移,照片增强等
  12. Deep Convolutional GAN “伪造”图像、图像发生语义上的平滑过度、语义遮罩、矢量算法
  13. DiscoGAN 从一个域到另一个域同时保存关键属性的网络传输方式,例如方向和脸部身份、边缘到图像
  14. DRAGAN 可以使用DRAGAN的梯度惩罚方案来避免这些GAN训练收敛的局部均衡
  15. DualGAN 使图像翻译人员可以从来自两个域的两组未标记图像中进行训练,由原始任务和双重任务构成的闭环允许翻译或重建来自任一域的图像
  16. Energy-Based GAN 训练单尺度体系结构以生成高分辨率图像。将鉴别器视为能量函数比常规GAN更稳定
  17. Enhanced Super-Resolution GAN 单幅图像超分辨率期间生成逼真的纹理
  18. GAN
  19. InfoGAN 不需要监督学习,而且不需要大量额外的计算花销就能得到可解释的特征
  20. Least Squares GAN 生成更高质量的图像、学习过程中表现更稳定
  21. MUNIT 多模式无监督图像到图像转换,允许通过提供示例样式图像来控制翻译输出的样式
  22. Pix2Pix 不需要手工设计映射功能,从标签图合成照片,从边缘图重建对象以及为图像着色等
  23. PixelDA 在渲染图像上训练的模型推广到真实图像,以无监督的方式学习了像素空间从一个域到另一个域的转换,对源域图像进行调整产生合理样本
  24. Relativistic GAN RGAN比非相对论的同类稳定得多,并且生成的数据样本质量更高;具有梯度罚分的标准RaGAN生成的质量比WGAN-GP更好的数据,而只需要单个鉴别符更新每次生成器更新;RaGAN能够从很小的样本中生成合理的高分辨率图像,图像的质量明显优于WGAN-GP和SGAN
  25. Semi-Supervised GAN 创建数据效率更高的分类器 而且它可以生成比常规GAN更高质量的样本
  26. Softmax GAN Softmax GAN是GAN的重要采样版本
  27. StarGAN 仅使用一个模型就可以对多个域执行图像到图像的转换,图像质量更高,具有将输入图像灵活转换为任何所需目标域的新颖功能(面部属性转移和面部表情合成)
  28. Super-Resolution GAN 用于图像超分辨率(SR)的生成对抗网络(GAN),区分超分辨图像和原始照片级逼真的图像
  29. UNIT 将提出的框架与竞争方法进行比较,并在各种具有挑战性的无监督图像翻译任务(包括街道场景图像翻译,动物图像翻译和面部图像翻译)上呈现高质量的图像翻译结果。我们还将提出的框架应用于领域适应,并在基准数据集上实现最新的性能
  30. Wasserstein GAN 传统GAN训练的替代方法:提高学习的稳定性,摆脱模式崩溃等问题,并提供有意义的学习曲线,可用于调试和超参数搜索
  31. Wasserstein GAN GP 削减权重的替代方法:比标准WGAN的性能更好,并且可以稳定训练几乎没有超参数调整的各种GAN架构,包括101层ResNet和离散数据的语言模型
  32. Wasserstein GAN DIV W-met的宽松版本

  1. 刘有用,张江梅,王坤朋,冯兴华,杨秀洪.不平衡数据集下的水下目标快速识别方法[J].计算机工程与应用,2020,56(17):236-242. ↩︎

  2. 孟莹莹. 基于GAN的低质视频增强与目标检测算法研究[D].北京交通大学,2019. ↩︎

  3. 陈国炜,刘磊,郭嘉逸,潘宗序,胡文龙.基于生成对抗网络的半监督遥感图像飞机检测[J].中国科学院大学学报,2020,37(04):539-546. ↩︎

  4. 高守义. 基于GAN的海面目标图像生成和效果评价[D].西安工业大学,2020. ↩︎

相关文章:

GANs学习记录

GAN 基于GAN的研究识别相关不同背景目标图像 可以用Augmentation2021.3.15 基于GAN的研究 是通过GAN 进行图像重建,恢复细节,去模糊,提高图像质量,图像还原,去噪等等。 识别相关 一种基于生成对抗网络的训练样本扩充…...

Flink-CDC——MySQL、SqlSqlServer、Oracle、达梦等数据库开启日志方法

目录 1. 前言 2. 数据源安装与配置 2.1 MySQL 2.1.1 安装 2.1.2 CDC 配置 2.2 Postgresql 2.2.1 安装 2.2.2 CDC 配置 2.3 Oracle 2.3.1 安装 2.3.2 CDC 配置 2.4 SQLServer 2.4.1 安装 2.4.2 CDC 配置 2.5达梦 2.4.1安装 2.4.2CDC配置 3. 验证 3.1 Flink版…...

linux设置tomcat redis开机自启动

设置Tomcat自启动 1.修改 /etc/rc.d/rc.local 文件 [rootiowZ]# vim /etc/rc.d/rc.local在/etc/rc.d/rc.local文件最后加上: export JAVA_HOME/usr/local/jdk /usr/local/apache-tomcat-8.5.73/bin/startup.sh start退出vim并保存修改的文件。 说明:/u…...

跨域问题讨论

问题 跨域定义 当一个请求url的协议、域名、端口三者之间任意一个与当前页面地址不同即为跨域。 跨域的安全隐患(CSRF攻击) 也就是说,一旦允许跨域,意味着允许恶意网站随意攻击可信网站,带来安全风险。 这里面有一…...

ESP32设备通信-两个ESP32设备之间HTTP通信

两个ESP32设备之间HTTP通信 文章目录 两个ESP32设备之间HTTP通信1、应用介绍2、软件准备3、硬件准备4、代码实现4.1 ESP32服务器节点代码4.2 ESP32客户端节点代码在本文中,我们将介绍如何在没有任何物理路由器或互联网连接的情况下使用 Wi-Fi 在两个 ESP32 开发板之间执行无线…...

数据结构学习笔记——查找算法中的树形查找(平衡二叉树)

目录 一、平衡二叉树的定义二、平衡因子三、平衡二叉树的插入和构造(一)LL型旋转(二)LR型旋转(三)RR型旋转(四)RL型旋转 四、平衡二叉树的删除(一)叶子结点&a…...

P1830 轰炸III

题目背景 一个大小为 ��nm 的城市遭到了 �x 次轰炸,每次都炸了一个每条边都与边界平行的矩形。 题目描述 在轰炸后,有 �y 个关键点,指挥官想知道,它们有没有受到过轰炸,如…...

大语言模型LLM知多少?

你知道哪些流行的大语言模型?你都体验过哪写? GPT-4,Llamma2, T5, BERT 还是 BART? 1.GPT-4 1.1.GPT-4 模型介绍 GPT-4(Generative Pre-trained Transformer 4)是由OpenAI开发的一种大型语言模型。GPT-4是前作GPT系列模型的进一步改进,旨在提高语言理解和生成的能力,…...

Redis命令行使用Lua脚本

Redis命令行使用Lua脚本 Lua脚本在Redis中的使用非常有用,它允许你在Redis服务器上执行自定义脚本,可以用于复杂的数据处理、原子性操作和执行多个Redis命令。以下是Lua脚本在Redis中的基本使用详细讲解: 运行Lua脚本: 在Redis中…...

HTML详细基础(三)表单控件

本帖介绍web开发中非常核心的标签——表格标签。 在日常我们使用到的各种需要输入用户信息的场景——如下图,均是通过表格标签table创造出来的: 目录 一.表格标签 二.表格属性 三.合并单元格 四.无序列表 五.有序列表 六.自定义标签 七.表单域 …...

map和set的具体用法 【C++】

文章目录 关联式容器键值对setset的定义方式set的使用 multisetmapmap的定义方式insertfinderase[]运算符重载map的迭代器遍历 multimap 关联式容器 关联式容器里面存储的是<key, value>结构的键值对&#xff0c;在数据检索时比序列式容器效率更高。比如&#xff1a;set…...

聚合统一,SpringBoot实现全局响应和全局异常处理

目录 前言 全局响应 数据规范 状态码(错误码) 全局响应类 使用 优化 全局异常处理 为什么需要全局异常处理 业务异常类 全局捕获 使用 优化 总结 前言 在悦享校园1.0版本中的数据返回采用了以Map对象返回的方式&#xff0c;虽然较为便捷但也带来一些问题。一是在…...

【C/C++笔试练习】——数组名和数组名、switch循环语句、数据在计算机中的存储顺序、字符串中找出连续最长的数字串、数组中出现次数超过一半的数字

文章目录 C/C笔试练习1.数组名和&数组名&#xff08;1&#xff09;数组名和&数组名的差异&#xff08;2&#xff09;理解数组名和指针偏移&#xff08;3&#xff09;理解数组名代表的含义&#xff08;4&#xff09;理解数组名代表的含义 2.switch循环语句&#xff08;6…...

力扣每日一题(+日常水题|树型dp)

740. 删除并获得点数 - 力扣&#xff08;LeetCode&#xff09; 简单分析一下: 每一个数字其实只有2个状态选 or 不 可得预处理每一个数初始状态(不选为0,选为所有x的个数 * x)累加即可 for(auto &x : nums)dp[x][1] x;每选一个树 i 删去 i 1 和 i - 1 故我们可以将 i…...

使用perming加速训练可预测的模型

监督学习模型的训练流程 perming是一个主要在支持CUDA加速的Windows操作系统上架构的机器学习算法&#xff0c;基于感知机模型来解决分布在欧式空间中线性不可分数据集的解决方案&#xff0c;是基于PyTorch中预定义的可调用函数&#xff0c;设计的一个面向大规模结构化数据集的…...

【数据库】存储引擎InnoDB、MyISAM、关系型数据库和非关系型数据库、如何执行一条SQL等重点知识汇总

目录 存储引擎InnoDB、MyISAM的适用场景 关系型和非关系型数据库的区别 MySQL如何执行一条SQL的 存储引擎InnoDB、MyISAM的适用场景 InnoDB 是 MySQL 默认的事务型存储引擎&#xff0c;只有在需要它不支持的特性时&#xff0c;才考虑使用其它存储引擎。实现了四个标准的隔…...

车道线分割检测

利用opencv&#xff0c;使用边缘检测、全局变化梯度阈值过滤、算子角度过滤、HLS阈值过滤的方法进行车道线分割检测&#xff0c;综合多种阈值过滤进行检测提高检测精度。 1.利用cv2.Sobel()计算图像梯度(边缘检测) import cv2 import numpy as np import matplotlib.pyplot a…...

树莓集团又一力作,打造天府蜂巢成都直播产业园样板工程

树莓集团再次推出惊艳之作&#xff0c;以打造成都天府蜂巢直播产业园为目标。该基地将充分展现成都直播产业园的巨大潜力与无限魅力&#xff0c;成为一个真正的产业园样板工程。 强强联手 打造未来 成都天府蜂巢直播产业园位于成都科学城兴隆湖高新技术服务产业园内&#xff0…...

ubuntu 软件包管理之二制作升级包

Deb 包(Debian 软件包)是一种用于在 Debian 及其衍生发行版(例如 Ubuntu)中分发和安装软件的标准包装格式。它们构成了 Debian Linux 发行版中的软件包管理系统的核心组成部分,旨在简化软件的分发、安装、更新和卸载流程。在本篇文章中,我们将深入探讨以下内容: Deb 包基…...

TCP/IP网络江湖——数据链路层的防御招式(数据链路层下篇:数据链路层的安全问题)

目录 引言 一、 数据链路层的隐私与保密 二、数据链路层的安全协议与加密...

ios项目安装hermes-engine太慢问题

问题说明 ios工程&#xff0c;在使用"pod install"安装依赖的时候&#xff0c;由于超时总是报错 $ pod install ... Installing hermes-engine (0.71.11)[!] Error installing hermes-engine [!] /usr/bin/curl -f -L -o /var/folders/4c/slcchpy55s53ysmz_1_q_gzw…...

构建个人云存储:本地电脑搭建SFTP服务器,开启公网访问,轻松共享与管理个人文件!

本地电脑搭建SFTP服务器&#xff0c;并实现公网访问 文章目录 本地电脑搭建SFTP服务器&#xff0c;并实现公网访问1. 搭建SFTP服务器1.1 下载 freesshd 服务器软件1.3 启动SFTP服务1.4 添加用户1.5 保存所有配置 2. 安装SFTP客户端FileZilla测试2.1 配置一个本地SFTP站点2.2 内…...

springboot 下载文件为excel数据,中文自定义单元格宽度

/**2 * Description:表格自适应宽度(中文支持)3 * Author: 4 * param sheet sheet5 * param columnLength 列数6 */7 private static void setSizeColumn(HSSFSheet sheet, int columnLength) {8 for (int columnNum 0; columnNum < …...

机器学习 面试/笔试题

1. 生成模型 VS 判别模型 生成模型&#xff1a; 由数据学得联合概率分布函数 P ( X , Y ) P(X,Y) P(X,Y),求出条件概率分布 P ( Y ∣ X ) P(Y|X) P(Y∣X)的预测模型。 朴素贝叶斯、隐马尔可夫模型、高斯混合模型、文档主题生成模型&#xff08;LDA&#xff09;、限制玻尔兹曼机…...

某企查ymg_ssr列表详情

js篇— 今天来看下某企查的列表详情–侵删 header发现这个参数 先断点一下 然后上一步 就到了这个地方 就开始扣一下这个js 三大段&#xff0c;先不解混淆了&#xff0c; 给a粘贴出来 &#xff0c;去掉自执行 给结果稍微改一下 缺windows&#xff0c;开始补环境 直接上…...

使用YOLOv5的backbone网络识别图像天气 - P9

目录 环境步骤环境设置包引用声明一个全局的设备 数据准备收集数据集信息构建数据集在数据集中读取分类名称划分训练、测试数据集数据集划分批次 模型设计编写维持卷积前后图像大小不变的padding计算函数编写YOLOv5中使用的卷积模块编写YOLOv5中使用的Bottleneck模块编写YOLOv5…...

TikTok海外扩张:亚马逊的新对手崛起

随着社交媒体和电子商务的融合&#xff0c;TikTok正迅速崭露头角&#xff0c;成为亚马逊等传统电商巨头的潜在竞争对手。这一新兴平台的快速发展引发了广泛的关注&#xff0c;特别是在全球范围内。 在这篇文章中&#xff0c;我们将探讨TikTok海外扩张的战略&#xff0c;以及它…...

CSS详细基础(五)选择器的优先级

本节介绍选择器优先级&#xff0c;优先级决定了元素最终展示的样式~ 浏览器是通过判断CSS优先级&#xff0c;来决定到底哪些属性值是与元素最为相关的&#xff0c;从而作用到该元素上。CSS选择器的合理组成规则决定了优先级&#xff0c;我们也常常用选择器优先级来合理控制元素…...

LLM-TAP随笔——有监督微调【深度学习】【PyTorch】【LLM】

文章目录 5、 有监督微调5.1、提示学习&语境学习5.2、高效微调5.3、模型上下文窗口扩展5.4、指令数据构建5.5、开源指令数据集 5、 有监督微调 5.1、提示学习&语境学习 提示学习 完成预测的三个阶段&#xff1a;提示添加、答案搜索、答案映射 提示添加 “[X] 我感到…...

kafka伪集群部署,使用docker环境拷贝模式

线上启动容器的方式是复制容器的运行环境出来&#xff0c;然后进行运行脚本的形式 1&#xff1a;在home/kafka目录下创建如下目录 2&#xff1a;复制kafka1容器内的数据/bitnami/kafka/data&#xff0c;直接放在1992_data里面&#xff0c;同理,复制kafka2容器内的数据/bitnami/…...

有没有专门做网站的/关键词搜索排行榜

本文将带领大家领略Spring事务的风采&#xff0c;Spring事务是我们在日常开发中经常会遇到的&#xff0c;也是各种大小面试中的高频题&#xff0c;希望通过本文&#xff0c;能让大家对Spring事务有个深入的了解&#xff0c;无论开发还是面试&#xff0c;都不会让Spring事务成为…...

南京市住房城乡建设委官方网站/北京网络推广

一 插槽: 用于在父模版中用于占位,增加组件扩展性 1.匿名插槽 2.具名插槽 3.作用域插槽 1.匿名插槽 ⼦组件定义 slot 插槽&#xff0c;但并未具名&#xff0c;因此也可以说是默认插槽。只要 在⽗元素中插⼊的内容&#xff0c;默认加⼊到这个插槽中去 2.具名插槽 具名插槽可以…...

不会编程怎么做网站/抖音搜索优化

当从后台获取到数据后&#xff0c;数据将传入app.js中的各个控制&#xff0c;之后将数据绑定到ion-view当中&#xff0c;index.html作为公用模板显示红色区域的内容。...

日本做a爱片视频网站/seo自学网

emsp; 我们在GPU的基本概念一节中&#xff0c;讲到过GPU中的内存模型&#xff0c;但那一节只是对模型的简单介绍&#xff0c;这一节&#xff0c;我们对GPU的内存进行更加深入的说明。 首先来回顾一下GPU中的内存&#xff1a; 每个线程都有自己的私有本地内存&#xff08;Loca…...

网站建设维护培训班/网站关键词如何快速上首页

相信大家都遇到过这样的问题&#xff0c;有手机浏览器的问题导致服务端SESSION读取不正常&#xff0c;目前在项目中的解决方法是采取H5手机本地存储唯一KEY解决的 代码片段 //定义json格式字符串 var userData {name: "sankyu Name",account:"sankyu",lev…...

百度网站是怎么做的/如何搭建一个网站

以前各种包都用过&#xff0c;操作了无数csv 和excel。 从来没有记录过。下面写了个简单例子&#xff0c;不过对于excel还是建议使用poi来操作。我没有封装&#xff0c;只是事例而已。import java.io.File;import java.io.FileNotFoundException;import java.io.IOException;im…...